[1]
|
L. Afraites, A. Hadri, A. Laghrib and M. Nachaoui, A high order PDE-constrained optimization for the image denoising problem, Inverse Problems in Science and Engineering (GIPE)., (2020).
doi: 10.1080/17415977.2020.1867547.
|
[2]
|
S. Avdonin, V. Kozlov, D. Maxwell and M. Truffer, Iterative methods for solving a nonlinear boundary inverse problem in glaciology, J. Inverse Ill-Posed Probl., 17 (2009), 239-258.
doi: 10.1515/JIIP.2009.018.
|
[3]
|
K. A. Berdawood, A. Nachaoui, R. Saeed, M. Nachaoui and F. Aboud, An alternating procedure with dynamic relaxation for Cauchy problems governed by the modified Helmholtz equation, Advanced Mathematical Models & Applications, 5 (2020), 131-139.
|
[4]
|
A. Bergam, A. Chakib, A. Nachaoui and M. Nachaoui, Adaptive mesh techniques based on a posteriori error estimates for an inverse Cauchy problem, Appl. Math. Comput., 346 (2019), 865-878.
doi: 10.1016/j.amc.2018.09.069.
|
[5]
|
F. Berntsson, V. A. Kozlov, L. Mpinganzima and B. O. Turesson, An alternating iterative procedure for the Cauchy problem for the Helmholtz equation, Inverse Probl. Sci. Eng., 22 (2014), 45-62.
doi: 10.1080/17415977.2013.827181.
|
[6]
|
A. Chakib, A. Nachaoui, M. Nachaoui and H. Ouaissa, On a fixed point study of an inverse problem governed by Stokes equation, Inverse Problems, 35 (2019), 015008, 30 pp.
doi: 10.1088/1361-6420/aaedce.
|
[7]
|
R. Chapko and B. T. Johansson, An alternating potential-based approach to the Cauchy problem for the Laplace equation in a planar domain with a cut, Comput. Methods Appl. Math., 8 (2008), 315-335.
doi: 10.2478/cmam-2008-0023.
|
[8]
|
J. T. Chen and F. C. Wong, Dual formulation of multiple reciprocity method for the acoustic mode of a cavity with a thin partition, Journal of Sound and Vibration, 217 (1998), 75-95.
doi: 10.1006/jsvi.1998.1743.
|
[9]
|
M. Choulli, Une Introduction aux Problèmes Inverses Elliptiques et Paraboliques, Springer-Verlag, Berlin, 2009.
doi: 10.1007/978-3-642-02460-3.
|
[10]
|
L. Eldén, F. Berntsson and T. Regińska, Wavelet and Fourier methods for solving the sideways heat equation, SIAM J. Sci. Comput., 21 (2000), 2187-2205.
doi: 10.1137/S1064827597331394.
|
[11]
|
A. Ellabib and A. Nachaoui, An iterative approach to the solution of an inverse problem in linear elasticity, Math. Comput. Simulation, 77 (2008), 189-201.
doi: 10.1016/j.matcom.2007.08.014.
|
[12]
|
M. Essaouini, A. Nachaoui and S. El Hajji, Numerical method for solving a class of nonlinear elliptic inverse problems, J. Comput. Appl. Math., 162 (2004), 165-181.
doi: 10.1016/j.cam.2003.08.011.
|
[13]
|
M. Essaouini, A. Nachaoui and S. El Hajji, Reconstruction of boundary data for a class of nonlinear inverse problems, J. Inverse Ill-Posed Probl., 12 (2004), 369-385.
doi: 10.1515/1569394042248238.
|
[14]
|
G. J. Fix and S. P. Marin, Variational methods for underwater acoustic problems, J. Comput. Phys., 28 (1978), 253-270.
doi: 10.1016/0021-9991(78)90037-2.
|
[15]
|
J. Hadamard, Lectures on Cauchy's Problem in Linear Partial Differential Equations, Dover Publications, New York, 1953.
|
[16]
|
Q. Hua, Y. Gu, W. Qu, W. Chen and C. Zhang, A meshless generalized finite difference method for inverse Cauchy problems associated with three-dimensional inhomogeneous Helmholtz-type equations, Eng. Anal. Bound. Elem., 82 (2017), 162-171.
doi: 10.1016/j.enganabound.2017.06.005.
|
[17]
|
F. Ihlenburg and I. Babuška, Finite element solution of the Helmholtz equation with high wave number Part I: The $h$-version of the FEM, Comput. Math. Appl., 30 (1995), 9-37.
doi: 10.1016/0898-1221(95)00144-N.
|
[18]
|
F. Ihlenburg and I. Babuška, Finite element solution of the Helmholtz equation with high wave number part II: The $h$-$p$ version of the FEM, SIAM J. Numer. Anal., 34 (1997), 315-358.
doi: 10.1137/S0036142994272337.
|
[19]
|
B. T. Johansson and V. A. Kozlov, An alternating method for Cauchy problems for Helmholtz-type operators in non-homogeneous medium, IMA J. Appl. Math., 74 (2009), 62-73.
doi: 10.1093/imamat/hxn013.
|
[20]
|
B. T. Johansson and L. Marin, Relaxation of alternating iterative algorithms for the Cauchy problem associated with the modified Helmholtz equation, CMC Comput. Mater. Continua, 13 (2009), 153-189.
|
[21]
|
M. Jourhmane and A. Nachaoui, A relaxation algorithm for solving a Cauchy problem, Inverse Problems in Engineering, Engineering, 1 (1996), 151-158.
|
[22]
|
M. Jourhmane and A. Nachaoui, An alternating method for an inverse Cauchy problem, Numer. Algorithms, 21 (1999), 247-260.
doi: 10.1023/A:1019134102565.
|
[23]
|
M. Jourhmane and A. Nachaoui, Convergence of an alternating method to solve the Cauchy problem for Poisson's equation, Appl. Anal., 81 (2002), 1065-1083.
doi: 10.1080/0003681021000029819.
|
[24]
|
D. A. Juraev, On a regularized solution of the Cauchy problem for matrix factorizations of the Helmholtz equation, Advanced Mathematical Models & Applications, 4 (2019), 86-96.
|
[25]
|
V. A. Kozlov, V. G. Maz'ya and A. V. Fomin, An iterative method for solving the Cauchy problem for elliptic equations, Zh. Vychisl. Mat. i Mat. Fiz., 31 (1991), 64-74.
|
[26]
|
Z. P. Li, C. Xu, M. Lan and Z. Qian, A mollification method for a Cauchy problem for the Helmholtz equation, Int. J. Comput. Math., 95 (2018), 2256-2268.
doi: 10.1080/00207160.2017.1380193.
|
[27]
|
S. Lyaqini, M. Quafafou and M. Nachaoui et al., Supervised learning as an inverse problem based on non-smooth loss function, Knowl. Inf. Syst., 62 (2020), 3039-3058.
doi: 10.1007/s10115-020-01439-2.
|
[28]
|
L. Marin, A relaxation method of an alternating iterative (MFS) algorithm for the Cauchy problem associated with the two-dimensional modified Helmholtz equation, Numer. Methods Partial Differential Equations, 28 (2012), 899-925.
doi: 10.1002/num.20664.
|
[29]
|
L. Marin, L. Elliott, P. J. Heggs, D. B. Ingham, D. Lesnic and X. Wen, An alternating iterative algorithm for the Cauchy problem associated to the Helmholtz equation, Comput. Methods Appl. Mech. Engrg., 192 (2003), 709-722.
doi: 10.1016/S0045-7825(02)00592-3.
|
[30]
|
L. Marin and B. T. Johansson, A relaxation method of an alternating iterative algorithm for the Cauchy problem in linear isotropic elasticity, Comput. Methods Appl. Mech. Engrg., 199 (2010), 3179-3196.
doi: 10.1016/j.cma.2010.06.024.
|
[31]
|
M. Nachaoui, Parameter learning for combined first and second order total variation for image reconstruction, Advanced Mathematical Models & Applications, 5 (2020), 53-69.
|
[32]
|
M. Nachaoui, Étude Théorique et Approximation Numérique d'un Problème Inverse de Transfert de la Chaleur, Doctoral Dissertation. (tel-00678032) Nantes unversity, 2011.
|
[33]
|
M. Nachaoui, A. Chakib and A. Nachaoui, An efficient evolutionary algorithm for a shape optimization problem, Applied and Computational Mathematics, 19 (2020), 220-244.
|
[34]
|
A. Nachaoui and M. Nachaoui, Iterative methods for Forward and Inverse Bioelelectric Field Problem, International Conference on Applied Mathematics, Modeling and Life Sciences, Icamls'18, Marmara University, Istanbul, Turkey. (hal-02599556) Oct 2018.
|
[35]
|
A. Nachaoui, M. Nachaoui, A. Chakib and M. A. Hilal, Some novel numerical techniques for an inverse Cauchy problem, J. Comput. Appl. Math., 381, (2021), 113030, 21 pp.
doi: 10.1016/j.cam.2020.113030.
|
[36]
|
A. Nachaoui, M. Nachaoui and T. Tadumadze, Electrical Potentials Measured on the Surface of the Knee for Detecting Osteoarthritis-Induced Cartilage Degeneration, Second International Conference of Mathematics in Erbil (SICME2019), 2019.
|
[37]
|
C. R. Vogel, Computational Methods for Inverse Problems, Society for Industrial and Applied Mathematics, 2002.
doi: 10.1137/1.9780898717570.
|
[38]
|
C. Yu, Z. Zhou and M. Zhuang, An acoustic intensity-based method for reconstruction of radiated fields, The Journal of the Acoustical Society of America, 123 (2008), 1892-1901.
doi: 10.1121/1.2875046.
|