
-
Previous Article
On the convergence to equilibria of a sequence defined by an implicit scheme
- DCDS-S Home
- This Issue
-
Next Article
Global attractor for damped forced nonlinear logarithmic Schrödinger equations
Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator
1. | Department of Mathematics, Malaviya National Institute of Technology, Jaipur-302017, INDIA |
2. | Department of HEAS(Mathematics), RTU, Kota-324010, INDIA |
3. | Department of Mathematics, University of Rajasthan, Jaipur 302004, Rajasthan, India |
The aim of this paper is to study the calcium profile governed by the advection diffusion equation. The mathematical and computational modeling has provided insights to understand the calcium signalling which depends upon cytosolic calcium concentration. Here the model includes the important physiological parameters like diffusion coefficient, flow velocity etc. The mathematical model is fractionalised using Hilfer derivative and appropriate boundary conditions have been framed. The use of fractional order derivative is more advantageous than the integer order because of the non-local property of the fractional order differentiation operator i.e. the next state of the system depends not only upon its current state but also upon all of its preceeding states. Analytic solution of the fractional advection diffusion equation arising in study of diffusion of cytosolic calcium in RBC is found using integral transform techniques. Since, the Hilfer derivative is generalisation of Riemann- Liouville and Caputo derivatives so, these two are also deduced as special cases. The numerical simulation has been done to observe the effects of the fractional order of the derivatives involved in the differential equation representing the model over the concentration of calcium which is function of time and distance. The concentration profile of calcium is significantly changed by the fractional order.
References:
[1] |
R. Agarwal, S. Jain and R. P. Agarwal,
Mathematical modeling and analysis of dynamics cytosolic calcium in astrocytes using fractional calculus, Journal of Fractional Calculus and Application, 9 (2018), 1-12.
|
[2] |
R. Agarwal and S. D. Purohit,
A mathematical fractional model with non-singular kernel for thrombin receptor activation in calcium signalling, Math Meth Appl Sci., 42 (2019), 7160-7171.
doi: 10.1002/mma.5822. |
[3] |
B. S. T. Alkahtani and A. Atangana,
Analysis of non-homogenous heat model with new trend of derivative with fractional order, Chaos, Soltons and Fractals, 89 (2016), 566-571.
doi: 10.1016/j.chaos.2016.03.027. |
[4] |
K. S. Al-Ghafri and H. Rezazadeh,
Solitons and other solutions of (3+ 1)-dimensional space–time fractional modified KdV–Zakharov–Kuznetsov equation, Applied Mathematics and Nonlinear Sciences, 4 (2019), 289-304.
|
[5] |
N. A. Asif, Z. Hammouch, M. B. Riaz and H. Bulut, Analytical solution of a Maxwell fluid with slip effects in view of the Caputo-Fabrizio derivative, The European Physical Journal Plus, 133 (2018), 272.
doi: 10.1140/epjp/i2018-12098-6. |
[6] |
I. Area, H. Batarfi, J. Losada, J. Nieto, W. Shammakh and A. Torres,
On a fractional order Ebola epidemic model, Advances in Difference Equations, 2015 (2015), 278-300.
doi: 10.1186/s13662-015-0613-5. |
[7] |
A. Atangana and B. Alkahtani,
Analysis of the Keller–Segel model with a fractional derivative without singular kernel, Entropy, 17 (2015), 4439-4453.
doi: 10.3390/e17064439. |
[8] |
A. Atangana and Z. Hammouch, Fractional calculus with power law: The cradle of our ancestors, The European Physical Journal Plus, 134 (2019), 429.
doi: 10.1140/epjp/i2019-12777-8. |
[9] |
D. Baleanu, Z. B. Güvenç and J. T. Machado, New trends in nanotechnology and fractional calculus applications, Springer, (2010). Google Scholar |
[10] |
D. Baleanu, D. Kumar and S. D. Purohit,
Generalized fractional integrals of product of two H-functions and a general class of polynomials, International Journal of Computer Mathematics, 93 (2016), 1320-1329.
doi: 10.1080/00207160.2015.1045886. |
[11] |
W. D. Brzeziński, Review of numerical methods for NumILPT with computational accuracy assessment for fractional calculus, Applied Mathematics and Nonlinear Sciences, 3 (2018), 487-502. Google Scholar |
[12] |
M. Caputo, Linear models of dissipation whos Q is almost frequency independent-II, Geophysical Journal International, 13 (1967), 529-539. Google Scholar |
[13] |
M. Caputo, Elasticitò e Dissipazione, Zanichelli, Bologna, 1969. Google Scholar |
[14] |
G. Dupont and A. Goldbeter,
Cam kinase II as frequency decoder of Ca2+ oscillations, Bioessays, 20 (1998), 607-610.
doi: 10.1002/(SICI)1521-1878(199808)20:8<607::AID-BIES2>3.0.CO;2-F. |
[15] |
H. Haubold, A. Mathai and R. Saxena,
Solution of fractional reaction-diffusion equations in terms of H-function, J. Comput. Appl. Math., 235 (2011), 1311-1316.
doi: 10.1016/j.cam.2010.08.016. |
[16] |
R. Hilfer, Fractional time evolution, Applications of Fractional Calculus in Physics, (2000), 87–130.
doi: 10.1142/9789812817747_0002. |
[17] |
M. A. Imran, M. Aleem, M. B. Riaz, R. Ali and I. Khan.,
A comprehensive report on convective flow of fractional (ABC) and (CF) MHD viscous fluid subject to generalized boundary conditions, Chaos, Solitons & Fractals, 118 (2019), 274-289.
doi: 10.1016/j.chaos.2018.12.001. |
[18] |
B. K. Jha, N. Adlakha and M. Mehta, Finite element model to study calcium diffusion in astrocytes, Int. J. of Pure and Appl. Math, 78 (2012), 945-955. Google Scholar |
[19] |
F. Jarad, T. Abdeljawad and Z. Hammouch,
On a class of ordinary differential equations in the frame of Atangana–Baleanu fractional derivative, Chaos, Solitons & Fractals, 117 (2018), 16-20.
doi: 10.1016/j.chaos.2018.10.006. |
[20] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science Limited, (2006). |
[21] |
D. Kumar, J. Singh and D. Baleanu, A fractional model of convective radial fins with temperature-dependent thermal conductivity, Rom. Rep. Phys, 69 (2017), 103. Google Scholar |
[22] |
D. Kumar, J. Singh and D. Baleanu, Numerical computation of a fractional model of differential-difference equation, Journal of Computational and Nonlinear Dynamics, 11 (2016), 061004, 6 pp.
doi: 10.1115/1.4033899. |
[23] |
D. Kumar, J. Singh and D. Baleanu, A new analysis of the Fornberg-Whitham equation pertaining to a fractional derivative with Mittag-Leffler-type kernel, The European Physical Journal Plus, 133 (2018), 70. Google Scholar |
[24] |
D. Kumar, J. Singh, K. Tanwar and D. Baleanu,
A new fractional exothermic reactions model having constant heat source in porous media with power, exponential and Mittag-Leffler Laws, International Journal of Heat and Mass Transfer, 138 (2019), 1222-1227.
doi: 10.1016/j.ijheatmasstransfer.2019.04.094. |
[25] |
D. Kumar, J. Singh and D. Baleanu,
On the analysis of vibration equation involving a fractional derivative with Mittag-Leffler law, Mathematical Methods in the Applied Sciences, 43 (2020), 443-457.
doi: 10.1002/mma.5903. |
[26] |
D. Kumar, J. Singh and D. Baleanu,
Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Leffler type kernel, Physica A., 492 (2018), 155-167.
doi: 10.1016/j.physa.2017.10.002. |
[27] |
D. Kumar, F. Tchier, J. Singh and D. Baleanu, An efficient computational technique for fractal vehicular traffic flow, Entropy, 20 (2018), 259.
doi: 10.3390/e20040259. |
[28] |
D. Kumar, J. Singh and D. Baleanu,
A new fractional model for convective straight fins with temperature-dependent thermal conductivity, Thermal Science, 22 (2018), 2791-2802.
doi: 10.2298/TSCI170129096K. |
[29] |
K. S. Miller and B. Ross, An Introduction to The Fractional Calculus and Fractional Differential Equations, Wiley Interscience, 1993. |
[30] |
G. Mittag-Lffler, Sur la nouvelle function E(x), CR Acad. Sci. Paris, 137 (1903), 554-558. Google Scholar |
[31] |
M. B. Riaz and A. A. Zafar,
Exact solutions for the blood flow through a circular tube under the influence of a magnetic field using fractional Caputo-Fabrizio derivatives, Mathematical Modelling of Natural Phenomena, 13 (2018), 8-20.
doi: 10.1051/mmnp/2018005. |
[32] |
J. Singh, D. Kumar and A. Kilçman, Numerical solution of nonlinear fractional partial differential equations arising in spatial diffusion of biological populations, Abstract and Applied Analysis, 2014 (2014), 535793, 12 pp.
doi: 10.1155/2014/535793. |
[33] |
J. Singh, A. Kilicman, D. Kumar, R. Swroop and F. M. Ali,
Numerical study for fractional model of nonlinear predator-prey biological population dynamical system, Thermal Science, 23 (2019), 2017-2025.
doi: 10.2298/TSCI190725366S. |
[34] |
J. Singh, D. Kumar and D. Baleanu,
New aspects of fractional Biswas-Milovic model with Mittag-Leffler law, Mathematical Modelling of Natural Phenomena, 14 (2019), 303-326.
doi: 10.1051/mmnp/2018068. |
[35] |
J. Singh, D. Kumar and D. Baleanu,
On the analysis of fractional diabetes model with exponential law, Advances in Difference Equations, 2018 (2018), 231-246.
doi: 10.1186/s13662-018-1680-1. |
[36] |
J. Singh, A new analysis for fractional rumor spreading dynamical model in a social network with Mittag-Leffler law, Chaos, 29 (2019), 013137, 7 pp.
doi: 10.1063/1.5080691. |
[37] |
I. N. Sneddon, Fourier Transforms, Inc., New York, 1951. |
[38] |
Z. Tomovski,
Generalised cauchy type problems for nonlinear fractional differential equation with composite fractional derivative operator, Nonlinear Anal-Theor., 75 (2012), 3364-3384.
doi: 10.1016/j.na.2011.12.034. |
[39] |
T. F. Wiesner, B. C. Berk and R. M. Nerem, A mathematical model of cytosolic calcium dynamics in human umbilical vein endothelial cells, American Journal of Physiology, 270 (1996), C1556–C1569.
doi: 10.1152/ajpcell.1996.270.5.C1556. |
[40] |
A. Wiman, On the fundamental theorem in the theory of functions, 29 (1905), 191–201. Google Scholar |
[41] |
F. K. Winston, L. E. Thibault and E. J. Macarak,
An analysis of the time-dependent changes in intracellular calcium concentration in endothelial cells in culture induced by mechanical stimulation, J. Biomech. Eng., 115 (1993), 160-168.
doi: 10.1115/1.2894116. |
[42] |
M. P. Yadav and R. Agarwal, Numerical investigation of fractional-fractal boussinesq equation, Chaos, 29 (2019), 013109, 7 pp.
doi: 10.1063/1.5080139. |
[43] |
I. K. Youssef and M. H. Dewaik,
Solving Poisson's Equations with fractional order using Haarwavelet, Applied Mathematics and Nonlinear Sciences, 2 (2017), 271-284.
doi: 10.21042/AMNS.2017.1.00023. |
[44] |
A. Yokuş, Comparison of Caputo and conformable derivatives for time-fractional Korteweg–de Vries equation via the finite difference method, International Journal of Modern Physics B, 32 (2018), 1850365, 12pp.
doi: 10.1142/S0217979218503654. |
[45] |
A. Yokuş and S. Gülbahar,
Numerical solutions with linearization techniques of the fractional harry dym equation, Applied Mathematics and Nonlinear Sciences, 4 (2019), 35-41.
|
[46] |
Y. Zhang, C. Cattani and X. Yang,
Local fractional homotopy perturbation method for solving non-homogeneous heat conduction equations in fractal domains, Entropy, 17 (2015), 6753-6764.
doi: 10.3390/e17106753. |
show all references
References:
[1] |
R. Agarwal, S. Jain and R. P. Agarwal,
Mathematical modeling and analysis of dynamics cytosolic calcium in astrocytes using fractional calculus, Journal of Fractional Calculus and Application, 9 (2018), 1-12.
|
[2] |
R. Agarwal and S. D. Purohit,
A mathematical fractional model with non-singular kernel for thrombin receptor activation in calcium signalling, Math Meth Appl Sci., 42 (2019), 7160-7171.
doi: 10.1002/mma.5822. |
[3] |
B. S. T. Alkahtani and A. Atangana,
Analysis of non-homogenous heat model with new trend of derivative with fractional order, Chaos, Soltons and Fractals, 89 (2016), 566-571.
doi: 10.1016/j.chaos.2016.03.027. |
[4] |
K. S. Al-Ghafri and H. Rezazadeh,
Solitons and other solutions of (3+ 1)-dimensional space–time fractional modified KdV–Zakharov–Kuznetsov equation, Applied Mathematics and Nonlinear Sciences, 4 (2019), 289-304.
|
[5] |
N. A. Asif, Z. Hammouch, M. B. Riaz and H. Bulut, Analytical solution of a Maxwell fluid with slip effects in view of the Caputo-Fabrizio derivative, The European Physical Journal Plus, 133 (2018), 272.
doi: 10.1140/epjp/i2018-12098-6. |
[6] |
I. Area, H. Batarfi, J. Losada, J. Nieto, W. Shammakh and A. Torres,
On a fractional order Ebola epidemic model, Advances in Difference Equations, 2015 (2015), 278-300.
doi: 10.1186/s13662-015-0613-5. |
[7] |
A. Atangana and B. Alkahtani,
Analysis of the Keller–Segel model with a fractional derivative without singular kernel, Entropy, 17 (2015), 4439-4453.
doi: 10.3390/e17064439. |
[8] |
A. Atangana and Z. Hammouch, Fractional calculus with power law: The cradle of our ancestors, The European Physical Journal Plus, 134 (2019), 429.
doi: 10.1140/epjp/i2019-12777-8. |
[9] |
D. Baleanu, Z. B. Güvenç and J. T. Machado, New trends in nanotechnology and fractional calculus applications, Springer, (2010). Google Scholar |
[10] |
D. Baleanu, D. Kumar and S. D. Purohit,
Generalized fractional integrals of product of two H-functions and a general class of polynomials, International Journal of Computer Mathematics, 93 (2016), 1320-1329.
doi: 10.1080/00207160.2015.1045886. |
[11] |
W. D. Brzeziński, Review of numerical methods for NumILPT with computational accuracy assessment for fractional calculus, Applied Mathematics and Nonlinear Sciences, 3 (2018), 487-502. Google Scholar |
[12] |
M. Caputo, Linear models of dissipation whos Q is almost frequency independent-II, Geophysical Journal International, 13 (1967), 529-539. Google Scholar |
[13] |
M. Caputo, Elasticitò e Dissipazione, Zanichelli, Bologna, 1969. Google Scholar |
[14] |
G. Dupont and A. Goldbeter,
Cam kinase II as frequency decoder of Ca2+ oscillations, Bioessays, 20 (1998), 607-610.
doi: 10.1002/(SICI)1521-1878(199808)20:8<607::AID-BIES2>3.0.CO;2-F. |
[15] |
H. Haubold, A. Mathai and R. Saxena,
Solution of fractional reaction-diffusion equations in terms of H-function, J. Comput. Appl. Math., 235 (2011), 1311-1316.
doi: 10.1016/j.cam.2010.08.016. |
[16] |
R. Hilfer, Fractional time evolution, Applications of Fractional Calculus in Physics, (2000), 87–130.
doi: 10.1142/9789812817747_0002. |
[17] |
M. A. Imran, M. Aleem, M. B. Riaz, R. Ali and I. Khan.,
A comprehensive report on convective flow of fractional (ABC) and (CF) MHD viscous fluid subject to generalized boundary conditions, Chaos, Solitons & Fractals, 118 (2019), 274-289.
doi: 10.1016/j.chaos.2018.12.001. |
[18] |
B. K. Jha, N. Adlakha and M. Mehta, Finite element model to study calcium diffusion in astrocytes, Int. J. of Pure and Appl. Math, 78 (2012), 945-955. Google Scholar |
[19] |
F. Jarad, T. Abdeljawad and Z. Hammouch,
On a class of ordinary differential equations in the frame of Atangana–Baleanu fractional derivative, Chaos, Solitons & Fractals, 117 (2018), 16-20.
doi: 10.1016/j.chaos.2018.10.006. |
[20] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science Limited, (2006). |
[21] |
D. Kumar, J. Singh and D. Baleanu, A fractional model of convective radial fins with temperature-dependent thermal conductivity, Rom. Rep. Phys, 69 (2017), 103. Google Scholar |
[22] |
D. Kumar, J. Singh and D. Baleanu, Numerical computation of a fractional model of differential-difference equation, Journal of Computational and Nonlinear Dynamics, 11 (2016), 061004, 6 pp.
doi: 10.1115/1.4033899. |
[23] |
D. Kumar, J. Singh and D. Baleanu, A new analysis of the Fornberg-Whitham equation pertaining to a fractional derivative with Mittag-Leffler-type kernel, The European Physical Journal Plus, 133 (2018), 70. Google Scholar |
[24] |
D. Kumar, J. Singh, K. Tanwar and D. Baleanu,
A new fractional exothermic reactions model having constant heat source in porous media with power, exponential and Mittag-Leffler Laws, International Journal of Heat and Mass Transfer, 138 (2019), 1222-1227.
doi: 10.1016/j.ijheatmasstransfer.2019.04.094. |
[25] |
D. Kumar, J. Singh and D. Baleanu,
On the analysis of vibration equation involving a fractional derivative with Mittag-Leffler law, Mathematical Methods in the Applied Sciences, 43 (2020), 443-457.
doi: 10.1002/mma.5903. |
[26] |
D. Kumar, J. Singh and D. Baleanu,
Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Leffler type kernel, Physica A., 492 (2018), 155-167.
doi: 10.1016/j.physa.2017.10.002. |
[27] |
D. Kumar, F. Tchier, J. Singh and D. Baleanu, An efficient computational technique for fractal vehicular traffic flow, Entropy, 20 (2018), 259.
doi: 10.3390/e20040259. |
[28] |
D. Kumar, J. Singh and D. Baleanu,
A new fractional model for convective straight fins with temperature-dependent thermal conductivity, Thermal Science, 22 (2018), 2791-2802.
doi: 10.2298/TSCI170129096K. |
[29] |
K. S. Miller and B. Ross, An Introduction to The Fractional Calculus and Fractional Differential Equations, Wiley Interscience, 1993. |
[30] |
G. Mittag-Lffler, Sur la nouvelle function E(x), CR Acad. Sci. Paris, 137 (1903), 554-558. Google Scholar |
[31] |
M. B. Riaz and A. A. Zafar,
Exact solutions for the blood flow through a circular tube under the influence of a magnetic field using fractional Caputo-Fabrizio derivatives, Mathematical Modelling of Natural Phenomena, 13 (2018), 8-20.
doi: 10.1051/mmnp/2018005. |
[32] |
J. Singh, D. Kumar and A. Kilçman, Numerical solution of nonlinear fractional partial differential equations arising in spatial diffusion of biological populations, Abstract and Applied Analysis, 2014 (2014), 535793, 12 pp.
doi: 10.1155/2014/535793. |
[33] |
J. Singh, A. Kilicman, D. Kumar, R. Swroop and F. M. Ali,
Numerical study for fractional model of nonlinear predator-prey biological population dynamical system, Thermal Science, 23 (2019), 2017-2025.
doi: 10.2298/TSCI190725366S. |
[34] |
J. Singh, D. Kumar and D. Baleanu,
New aspects of fractional Biswas-Milovic model with Mittag-Leffler law, Mathematical Modelling of Natural Phenomena, 14 (2019), 303-326.
doi: 10.1051/mmnp/2018068. |
[35] |
J. Singh, D. Kumar and D. Baleanu,
On the analysis of fractional diabetes model with exponential law, Advances in Difference Equations, 2018 (2018), 231-246.
doi: 10.1186/s13662-018-1680-1. |
[36] |
J. Singh, A new analysis for fractional rumor spreading dynamical model in a social network with Mittag-Leffler law, Chaos, 29 (2019), 013137, 7 pp.
doi: 10.1063/1.5080691. |
[37] |
I. N. Sneddon, Fourier Transforms, Inc., New York, 1951. |
[38] |
Z. Tomovski,
Generalised cauchy type problems for nonlinear fractional differential equation with composite fractional derivative operator, Nonlinear Anal-Theor., 75 (2012), 3364-3384.
doi: 10.1016/j.na.2011.12.034. |
[39] |
T. F. Wiesner, B. C. Berk and R. M. Nerem, A mathematical model of cytosolic calcium dynamics in human umbilical vein endothelial cells, American Journal of Physiology, 270 (1996), C1556–C1569.
doi: 10.1152/ajpcell.1996.270.5.C1556. |
[40] |
A. Wiman, On the fundamental theorem in the theory of functions, 29 (1905), 191–201. Google Scholar |
[41] |
F. K. Winston, L. E. Thibault and E. J. Macarak,
An analysis of the time-dependent changes in intracellular calcium concentration in endothelial cells in culture induced by mechanical stimulation, J. Biomech. Eng., 115 (1993), 160-168.
doi: 10.1115/1.2894116. |
[42] |
M. P. Yadav and R. Agarwal, Numerical investigation of fractional-fractal boussinesq equation, Chaos, 29 (2019), 013109, 7 pp.
doi: 10.1063/1.5080139. |
[43] |
I. K. Youssef and M. H. Dewaik,
Solving Poisson's Equations with fractional order using Haarwavelet, Applied Mathematics and Nonlinear Sciences, 2 (2017), 271-284.
doi: 10.21042/AMNS.2017.1.00023. |
[44] |
A. Yokuş, Comparison of Caputo and conformable derivatives for time-fractional Korteweg–de Vries equation via the finite difference method, International Journal of Modern Physics B, 32 (2018), 1850365, 12pp.
doi: 10.1142/S0217979218503654. |
[45] |
A. Yokuş and S. Gülbahar,
Numerical solutions with linearization techniques of the fractional harry dym equation, Applied Mathematics and Nonlinear Sciences, 4 (2019), 35-41.
|
[46] |
Y. Zhang, C. Cattani and X. Yang,
Local fractional homotopy perturbation method for solving non-homogeneous heat conduction equations in fractal domains, Entropy, 17 (2015), 6753-6764.
doi: 10.3390/e17106753. |


[1] |
Alberto Ibort, Alberto López-Yela. Quantum tomography and the quantum Radon transform. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021021 |
[2] |
Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021014 |
[3] |
George A. Anastassiou. Iyengar-Hilfer fractional inequalities. Mathematical Foundations of Computing, 2021 doi: 10.3934/mfc.2021004 |
[4] |
Yan Zhang, Peibiao Zhao, Xinghu Teng, Lei Mao. Optimal reinsurance and investment strategies for an insurer and a reinsurer under Hestons SV model: HARA utility and Legendre transform. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2139-2159. doi: 10.3934/jimo.2020062 |
[5] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
[6] |
Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197 |
[7] |
Haili Qiao, Aijie Cheng. A fast high order method for time fractional diffusion equation with non-smooth data. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021073 |
[8] |
Ankit Kumar, Kamal Jeet, Ramesh Kumar Vats. Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021016 |
[9] |
Bo Duan, Zhengce Zhang. A reaction-diffusion-advection two-species competition system with a free boundary in heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021067 |
[10] |
Renhao Cui. Asymptotic profiles of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with saturated incidence rate. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2997-3022. doi: 10.3934/dcdsb.2020217 |
[11] |
Iman Malmir. Caputo fractional derivative operational matrices of legendre and chebyshev wavelets in fractional delay optimal control. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021013 |
[12] |
Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028 |
[13] |
Andreia Chapouto. A remark on the well-posedness of the modified KdV equation in the Fourier-Lebesgue spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3915-3950. doi: 10.3934/dcds.2021022 |
[14] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[15] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[16] |
Mohamed Ouzahra. Approximate controllability of the semilinear reaction-diffusion equation governed by a multiplicative control. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021081 |
[17] |
Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, , () : -. doi: 10.3934/era.2021024 |
[18] |
Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021021 |
[19] |
Shoichi Hasegawa, Norihisa Ikoma, Tatsuki Kawakami. On weak solutions to a fractional Hardy–Hénon equation: Part I: Nonexistence. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021033 |
[20] |
Yingdan Ji, Wen Tan. Global well-posedness of a 3D Stokes-Magneto equations with fractional magnetic diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3271-3278. doi: 10.3934/dcdsb.2020227 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]