doi: 10.3934/dcdss.2021019

Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function

1. 

Department of Mathematics, Wollo University, P.O. Box 1145, Dessie, Ethiopia

2. 

Department of HEAS (Mathematics), Rajasthan Technical University, Kota, 324010, India

3. 

Department of Mathematics, JECRC University, Jaipur 303905, Rajasthan, India

* Corresponding author: Jagdev Singh

Received  October 2019 Revised  December 2019 Published  March 2021

In this article, we have investigated certain definite integrals and various integral transforms of the generalized multi-index Bessel function, such as Euler transform, Laplace transform, Whittaker transform, K-transform and Fourier transforms. Also found the applications of the problem on fractional kinetic equation pertaining to the generalized multi-index Bessel function using the Sumudu transform technique. Mittage-Leffler function is used to express the results of the solutions of fractional kinetic equation as well as its special cases. The results obtained are significance in applied problems of science, engineering and technology.

Citation: Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2021019
References:
[1]

P. AgarwalM. ChandD. BaleanuD. $\acute{O}$regan and S. Jain, On the solutions of certain fractional kinetic equations involving $k$-Mittag-Leffler function, Adv. Difference Equ., 249 (2018), 249-262.  doi: 10.1186/s13662-018-1694-8.  Google Scholar

[2]

P. AgarwalS. K. NtouyasS. JainM. Chand and G. Singh, Fractional kinetic equations involving generalized $k$-Bessel function via Sumudu transform, Alexandria Engineering Journal, 57 (2018), 1937-1942.  doi: 10.1016/j.aej.2017.03.046.  Google Scholar

[3]

N. Abeye and D. L. Suthar, The $\overline H$-function and Srivastava's polynomials involving the generalized Mellin-Barnes contour integrals, J. Fract. Calc. Appl., 10 (2019), 290-297.   Google Scholar

[4]

M. Chand, Z. Hammouch, J. K. Asamoah and D. Baleanu, Certain fractional integrals and solutions of fractional kinetic equations involving the product of S-function, Mathematical Methods in Engineering, Nonlinear Syst. Complex., Springer, Cham, 24 (2019), 213–244.  Google Scholar

[5]

M. ChandJ. C. Prajapati and E. Bonyah, Fractional integrals and solution of fractional kinetic equations involving $k$-Mittag-Leffler function, Transactions of A. Razmadze Mathematical Institute, 171 (2017), 144-166.  doi: 10.1016/j.trmi.2017.03.003.  Google Scholar

[6]

M. ChandJ. C. PrajapatiE. Bonyah and J. K. Bansal, Fractional calculus and applications of family of extended generalized Gauss hypergeometric functions, Discrete & Continuous Dynamical Systems - S, 13 (2020), 539-560.  doi: 10.3934/dcdss.2020030.  Google Scholar

[7]

J. Choi and P. Agarwal, A note on fractional integral operator associated multi-index Mittag-Leffler functions, Filomat, 30 (2016), 1931-1939.  doi: 10.2298/FIL1607931C.  Google Scholar

[8]

J. Choi and D. Kumar, Solutions of generalized fractional kinetic equations involving Aleph functions, Math. Commun., 20 (2015), 113-123.   Google Scholar

[9]

J. DaiyaJ. Ram and D. Kumar, The multivariable H-function and the general class of Srivastava polynomials involving the generalized Mellin-Barnes contour integrals, Filomat, 30 (2016), 1457-1464.  doi: 10.2298/FIL1606457D.  Google Scholar

[10]

G. Dorrego and D. Kumar, A generalization of the kinetic equation using the Prabhakar-type operators, Honam Math. J., 39 (2017), 401-416.   Google Scholar

[11]

A. Erd$\acute{e}$lyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. 1, McGraw-Hill, New York, 1953. Google Scholar

[12]

A. Erd$\acute{e}$lyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. 2, McGraw-Hill, New York, 1954. Google Scholar

[13]

C. Fox, The asymptotic expansion of generalized hypergeometric functions, Proc. London Math. Soc., 27 (1928), 389-400.  doi: 10.1112/plms/s2-27.1.389.  Google Scholar

[14]

H. Habenom, D. L. Suthar and M. Gebeyehu, Application of Laplace transform on fractional kinetic equation pertaining to the generalized Galué type Struve function, Adv. Math. Phys., (2019), 5074039, 8 pp. doi: 10.1155/2019/5074039.  Google Scholar

[15]

H. J. Haubold and A. M. Mathai, The fractional kinetic equation and thermonuclear functions, Astrophys. Space Sci., 273 (2000), 53-63.   Google Scholar

[16]

R. JanM. A. KhanP. Kumam and P. Thounthong, Modeling the transmission of dengue infection through fractional derivatives, Chaos Solitons Fractals, 127 (2019), 189-216.  doi: 10.1016/j.chaos.2019.07.002.  Google Scholar

[17]

V. Kourganoff, Introduction to the Physics of Stellar Interiors, D. Reidel Publishing Company Dordrecht, Holland, 1973. doi: 10.1007/978-94-010-2539-3.  Google Scholar

[18]

M. A. Khan, A. Khan and A. Elsonbaty, Modeling and simulation results of a fractional dengue model, Eur. Phys. J. Plus, 134 (2019), 329. doi: 10.1140/epjp/i2019-12765-0.  Google Scholar

[19]

M. A. KhanZ. Hammouch and D. Baleanu, Modeling the dynamics of hepatitis E via the Caputo-Fabrizio derivative, Math. Model. Nat. Phenom., 14 (2019), 311-330.  doi: 10.1051/mmnp/2018074.  Google Scholar

[20]

D. KumarJ. Choi and H. M. Srivastava, Solution of a general family of fractional kinetic equations associated with the generalized Mittag-Leffler function, Nonlinear Funct. Anal. Appl., 23 (2018), 455-471.   Google Scholar

[21]

D. Kumar, S. D. Purohit, A. Secer and A. Atangana, On generalized fractional kinetic equations involving generalized Bessel function of the first kind, Math. Probl. Eng., 2015 (2015), 289387, 7 pp. doi: 10.1155/2015/289387.  Google Scholar

[22]

D. KumarJ. SinghK. Tanwar and D. Baleanu, A new fractional exothermic reactions model having constant heat source in porous media with power, exponential and Mittag-Leffler Laws, International Journal of Heat and Mass Transfer, 138 (2019), 1222-1227.  doi: 10.1016/j.ijheatmasstransfer.2019.04.094.  Google Scholar

[23]

D. KumarJ. Singh and D. Baleanu, On the analysis of vibration equation involving a fractional derivative with Mittag-Leffler law, Mathematical Methods in the Applied Sciences, 43 (2019), 443-457.  doi: 10.1002/mma.5903.  Google Scholar

[24]

D. KumarJ. Singh and D. Baleanu, Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Leffler type kernel, Physica A., 492 (2018), 155-167.  doi: 10.1016/j.physa.2017.10.002.  Google Scholar

[25]

D. Kumar, F. Tchier, J. Singh and D. Baleanu, An efficient computational technique for fractal vehicular traffic flow, Entropy, 20 (2018), 259. doi: 10.3390/e20040259.  Google Scholar

[26]

D. KumarJ. Singh and D. Baleanu, A new fractional model for convective straight fins with temperature-dependent thermal conductivity, Thermal Science, 22 (2018), 2791-2802.  doi: 10.2298/TSCI170129096K.  Google Scholar

[27]

Y. LuchkoH. Martinez and J. Trujillo, Fractional Fourier transform and some of its applications, Fractional Calculus & Applied Analysis, 11 (2008), 457-470.   Google Scholar

[28]

A. M. Mathai, R. K. Saxena and H. J. Haubold, The H-Function Theory and Application, Springer, New York, 2010. doi: 10.1007/978-1-4419-0916-9.  Google Scholar

[29]

N. MenariaD. Baleanu and S. D. Purohit, Integral formulas involving product of general class of polynomials and generalized Bessel function, Sohag J. Math., 3 (2016), 77-81.  doi: 10.18576/sjm/030205.  Google Scholar

[30]

N. Menaria, K. S. Nisar and S. D. Purohit, On a new class of integrals involving product of generalized Bessel function of first kind and general class of polynomials, Acta Univ. Apulensis Math. Inform., (2016), 97–105. doi: 10.17114/j.aua.  Google Scholar

[31]

K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New-York, NY, USA, 1993.  Google Scholar

[32]

V. Namias, The fractional order Fourier and its application to quantum mechanics, J. Inst. Math. Appl., 25 (1980), 241-265.  doi: 10.1093/imamat/25.3.241.  Google Scholar

[33]

K. S. Nisar, S. D. Purohit, D. L. Suthar and J. Singh, Fractional Order Integration and Certain Integrals of Generalized Multi-index Bessel Function, Proceedings in Mathematics & Statistics, Springer, Singapore, 272 (2019). doi: 10.1007/978-981-13-9608-3_10.  Google Scholar

[34]

M. I. QureshiK. A. Quraishi and R. Pal, Some definite integrals of Gradshteyn-Ryzhil and other integrals, Glo. J. Sci. Fron. Res., 24 (4) (2011), 75-80.   Google Scholar

[35]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York, 1993.  Google Scholar

[36]

R. K. Saxena and K. Nishimoto, N-fractional calculus of generalized Mittag-Leffler functions, J. Fract. Calc., 37 (2010), 43-52.   Google Scholar

[37]

S. A. A. Shah, A. A. Syed M. A. Khan, M. Farooq, S. Ullah and E. O. Alzahrani, A fractional order model for Hepatitis B virus with treatment via Atangana-Baleanu derivative, Physica A: Statistical Mechanics and its Applications, 530 (2020), 122636, 17 pp. doi: 10.1016/j.physa.2019.122636.  Google Scholar

[38]

J. SinghA. KilicmanD. KumarR. Swroop and F. M. Ali, Numerical study for fractional model of nonlinear predator-prey biological population dynamical system, Thermal Science, 23 (2019), 2017-2025.  doi: 10.2298/TSCI190725366S.  Google Scholar

[39]

J. SinghD. Kumar and D. Baleanu, New aspects of fractional Biswas-Milovic model with Mittag-Leffler law, Mathematical Modelling of Natural Phenomena, 14 (2019), 303-326.  doi: 10.1051/mmnp/2018068.  Google Scholar

[40] L. J. Slater, Generalized Hypergeometric functions, Cambridge University Press, 1966.   Google Scholar
[41]

H. M. Srivastava and J. Choi, Zeta and $q$-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012. doi: 10.1016/B978-0-12-385218-2.00001-3.  Google Scholar

[42]

D. L. Suthar and P. Agarwal, Generalized Mittag-Leffler function and the multivariable H-function involving the generalized Mellin-Barnes contour integrals, Commun. Numer. Anal., 2017 (2017), 25-33.   Google Scholar

[43]

D. L. Suthar and H. Amsalu, Certain integrals associated with the generalized Bessel-Maitland function, Appl. Appl. Math., 12 (2017), 1002-1016.   Google Scholar

[44]

D. L. Suthar, H. Amsalu and K. Godifey, Certain integrals involving multivariate Mittag-Leffler function, J. Inequal. Appl., (2019), 208–224. doi: 10.1186/s13660-019-2162-z.  Google Scholar

[45]

D. L. Suthar and M. Ayene, Generalized fractional integral formulas for the $k$-Bessel function, J. Math., (2018), 5198621, 8 pp. doi: 10.1155/2018/5198621.  Google Scholar

[46]

D. L. Suthar, D. Kumar and H. Habenom, Solutions of fractional kinetic equation associated with the generalized multi-index Bessel function via Laplace transform, Differ. Equ. Dyn. Syst., (2019). doi: 10.1007/s12591-019-00504-9.  Google Scholar

[47]

D. L. SutharS. D. Purohit and R. K. Parmar, Generalized fractional calculus of the multi-index Bessel function, Math. Nat. Sci., 1 (2017), 26-32.   Google Scholar

[48]

D. L. Suthar and T. Tsagye, Riemann-Liouville fractional integrals and differential formula involving Multi-index Bessel-function, Math. Sci. Lett., 6 (2017), 233-237.   Google Scholar

[49]

S. UllahM. A. Khan and M. Farooq, A fractional model for the dynamics of TB virus, Chaos Solitons Fractals, 116 (2018), 63-71.  doi: 10.1016/j.chaos.2018.09.001.  Google Scholar

[50]

W. WangM. A. KhanFa tmawatiP. Kumam and P. Thounthong, A comparison study of bank data in fractional calculus, Chaos Solitons Fractals, 126 (2019), 369-384.  doi: 10.1016/j.chaos.2019.07.025.  Google Scholar

[51]

G. K. Watugala, Sumudu transform: A new integral transform to solve differential equations and control engineering problems, Int. J. Math. Educ. Sci. Technol., 24 (1993), 35-43.  doi: 10.1080/0020739930240105.  Google Scholar

[52]

G. K. Watugala, The Sumudu transform for functions of two variables, Math. Eng. Ind., 8 (2002), 293-302.   Google Scholar

[53]

A. Wiman, Über den Fundamentalsatz in der Teorie der Funktionen $E_\alpha(x)$, Acta Math., 29 (1905), 191-201.  doi: 10.1007/BF02403202.  Google Scholar

[54] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge Univ. Press, Cambridge, 1962.  doi: 10.1017/CBO9780511608759.  Google Scholar
[55]

E. M. Wright, The asymptotic expansion of the generalized hypergeometric functions, J. London Math. Soc., 10 (1935), 286-293.   Google Scholar

show all references

References:
[1]

P. AgarwalM. ChandD. BaleanuD. $\acute{O}$regan and S. Jain, On the solutions of certain fractional kinetic equations involving $k$-Mittag-Leffler function, Adv. Difference Equ., 249 (2018), 249-262.  doi: 10.1186/s13662-018-1694-8.  Google Scholar

[2]

P. AgarwalS. K. NtouyasS. JainM. Chand and G. Singh, Fractional kinetic equations involving generalized $k$-Bessel function via Sumudu transform, Alexandria Engineering Journal, 57 (2018), 1937-1942.  doi: 10.1016/j.aej.2017.03.046.  Google Scholar

[3]

N. Abeye and D. L. Suthar, The $\overline H$-function and Srivastava's polynomials involving the generalized Mellin-Barnes contour integrals, J. Fract. Calc. Appl., 10 (2019), 290-297.   Google Scholar

[4]

M. Chand, Z. Hammouch, J. K. Asamoah and D. Baleanu, Certain fractional integrals and solutions of fractional kinetic equations involving the product of S-function, Mathematical Methods in Engineering, Nonlinear Syst. Complex., Springer, Cham, 24 (2019), 213–244.  Google Scholar

[5]

M. ChandJ. C. Prajapati and E. Bonyah, Fractional integrals and solution of fractional kinetic equations involving $k$-Mittag-Leffler function, Transactions of A. Razmadze Mathematical Institute, 171 (2017), 144-166.  doi: 10.1016/j.trmi.2017.03.003.  Google Scholar

[6]

M. ChandJ. C. PrajapatiE. Bonyah and J. K. Bansal, Fractional calculus and applications of family of extended generalized Gauss hypergeometric functions, Discrete & Continuous Dynamical Systems - S, 13 (2020), 539-560.  doi: 10.3934/dcdss.2020030.  Google Scholar

[7]

J. Choi and P. Agarwal, A note on fractional integral operator associated multi-index Mittag-Leffler functions, Filomat, 30 (2016), 1931-1939.  doi: 10.2298/FIL1607931C.  Google Scholar

[8]

J. Choi and D. Kumar, Solutions of generalized fractional kinetic equations involving Aleph functions, Math. Commun., 20 (2015), 113-123.   Google Scholar

[9]

J. DaiyaJ. Ram and D. Kumar, The multivariable H-function and the general class of Srivastava polynomials involving the generalized Mellin-Barnes contour integrals, Filomat, 30 (2016), 1457-1464.  doi: 10.2298/FIL1606457D.  Google Scholar

[10]

G. Dorrego and D. Kumar, A generalization of the kinetic equation using the Prabhakar-type operators, Honam Math. J., 39 (2017), 401-416.   Google Scholar

[11]

A. Erd$\acute{e}$lyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. 1, McGraw-Hill, New York, 1953. Google Scholar

[12]

A. Erd$\acute{e}$lyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. 2, McGraw-Hill, New York, 1954. Google Scholar

[13]

C. Fox, The asymptotic expansion of generalized hypergeometric functions, Proc. London Math. Soc., 27 (1928), 389-400.  doi: 10.1112/plms/s2-27.1.389.  Google Scholar

[14]

H. Habenom, D. L. Suthar and M. Gebeyehu, Application of Laplace transform on fractional kinetic equation pertaining to the generalized Galué type Struve function, Adv. Math. Phys., (2019), 5074039, 8 pp. doi: 10.1155/2019/5074039.  Google Scholar

[15]

H. J. Haubold and A. M. Mathai, The fractional kinetic equation and thermonuclear functions, Astrophys. Space Sci., 273 (2000), 53-63.   Google Scholar

[16]

R. JanM. A. KhanP. Kumam and P. Thounthong, Modeling the transmission of dengue infection through fractional derivatives, Chaos Solitons Fractals, 127 (2019), 189-216.  doi: 10.1016/j.chaos.2019.07.002.  Google Scholar

[17]

V. Kourganoff, Introduction to the Physics of Stellar Interiors, D. Reidel Publishing Company Dordrecht, Holland, 1973. doi: 10.1007/978-94-010-2539-3.  Google Scholar

[18]

M. A. Khan, A. Khan and A. Elsonbaty, Modeling and simulation results of a fractional dengue model, Eur. Phys. J. Plus, 134 (2019), 329. doi: 10.1140/epjp/i2019-12765-0.  Google Scholar

[19]

M. A. KhanZ. Hammouch and D. Baleanu, Modeling the dynamics of hepatitis E via the Caputo-Fabrizio derivative, Math. Model. Nat. Phenom., 14 (2019), 311-330.  doi: 10.1051/mmnp/2018074.  Google Scholar

[20]

D. KumarJ. Choi and H. M. Srivastava, Solution of a general family of fractional kinetic equations associated with the generalized Mittag-Leffler function, Nonlinear Funct. Anal. Appl., 23 (2018), 455-471.   Google Scholar

[21]

D. Kumar, S. D. Purohit, A. Secer and A. Atangana, On generalized fractional kinetic equations involving generalized Bessel function of the first kind, Math. Probl. Eng., 2015 (2015), 289387, 7 pp. doi: 10.1155/2015/289387.  Google Scholar

[22]

D. KumarJ. SinghK. Tanwar and D. Baleanu, A new fractional exothermic reactions model having constant heat source in porous media with power, exponential and Mittag-Leffler Laws, International Journal of Heat and Mass Transfer, 138 (2019), 1222-1227.  doi: 10.1016/j.ijheatmasstransfer.2019.04.094.  Google Scholar

[23]

D. KumarJ. Singh and D. Baleanu, On the analysis of vibration equation involving a fractional derivative with Mittag-Leffler law, Mathematical Methods in the Applied Sciences, 43 (2019), 443-457.  doi: 10.1002/mma.5903.  Google Scholar

[24]

D. KumarJ. Singh and D. Baleanu, Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Leffler type kernel, Physica A., 492 (2018), 155-167.  doi: 10.1016/j.physa.2017.10.002.  Google Scholar

[25]

D. Kumar, F. Tchier, J. Singh and D. Baleanu, An efficient computational technique for fractal vehicular traffic flow, Entropy, 20 (2018), 259. doi: 10.3390/e20040259.  Google Scholar

[26]

D. KumarJ. Singh and D. Baleanu, A new fractional model for convective straight fins with temperature-dependent thermal conductivity, Thermal Science, 22 (2018), 2791-2802.  doi: 10.2298/TSCI170129096K.  Google Scholar

[27]

Y. LuchkoH. Martinez and J. Trujillo, Fractional Fourier transform and some of its applications, Fractional Calculus & Applied Analysis, 11 (2008), 457-470.   Google Scholar

[28]

A. M. Mathai, R. K. Saxena and H. J. Haubold, The H-Function Theory and Application, Springer, New York, 2010. doi: 10.1007/978-1-4419-0916-9.  Google Scholar

[29]

N. MenariaD. Baleanu and S. D. Purohit, Integral formulas involving product of general class of polynomials and generalized Bessel function, Sohag J. Math., 3 (2016), 77-81.  doi: 10.18576/sjm/030205.  Google Scholar

[30]

N. Menaria, K. S. Nisar and S. D. Purohit, On a new class of integrals involving product of generalized Bessel function of first kind and general class of polynomials, Acta Univ. Apulensis Math. Inform., (2016), 97–105. doi: 10.17114/j.aua.  Google Scholar

[31]

K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New-York, NY, USA, 1993.  Google Scholar

[32]

V. Namias, The fractional order Fourier and its application to quantum mechanics, J. Inst. Math. Appl., 25 (1980), 241-265.  doi: 10.1093/imamat/25.3.241.  Google Scholar

[33]

K. S. Nisar, S. D. Purohit, D. L. Suthar and J. Singh, Fractional Order Integration and Certain Integrals of Generalized Multi-index Bessel Function, Proceedings in Mathematics & Statistics, Springer, Singapore, 272 (2019). doi: 10.1007/978-981-13-9608-3_10.  Google Scholar

[34]

M. I. QureshiK. A. Quraishi and R. Pal, Some definite integrals of Gradshteyn-Ryzhil and other integrals, Glo. J. Sci. Fron. Res., 24 (4) (2011), 75-80.   Google Scholar

[35]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York, 1993.  Google Scholar

[36]

R. K. Saxena and K. Nishimoto, N-fractional calculus of generalized Mittag-Leffler functions, J. Fract. Calc., 37 (2010), 43-52.   Google Scholar

[37]

S. A. A. Shah, A. A. Syed M. A. Khan, M. Farooq, S. Ullah and E. O. Alzahrani, A fractional order model for Hepatitis B virus with treatment via Atangana-Baleanu derivative, Physica A: Statistical Mechanics and its Applications, 530 (2020), 122636, 17 pp. doi: 10.1016/j.physa.2019.122636.  Google Scholar

[38]

J. SinghA. KilicmanD. KumarR. Swroop and F. M. Ali, Numerical study for fractional model of nonlinear predator-prey biological population dynamical system, Thermal Science, 23 (2019), 2017-2025.  doi: 10.2298/TSCI190725366S.  Google Scholar

[39]

J. SinghD. Kumar and D. Baleanu, New aspects of fractional Biswas-Milovic model with Mittag-Leffler law, Mathematical Modelling of Natural Phenomena, 14 (2019), 303-326.  doi: 10.1051/mmnp/2018068.  Google Scholar

[40] L. J. Slater, Generalized Hypergeometric functions, Cambridge University Press, 1966.   Google Scholar
[41]

H. M. Srivastava and J. Choi, Zeta and $q$-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012. doi: 10.1016/B978-0-12-385218-2.00001-3.  Google Scholar

[42]

D. L. Suthar and P. Agarwal, Generalized Mittag-Leffler function and the multivariable H-function involving the generalized Mellin-Barnes contour integrals, Commun. Numer. Anal., 2017 (2017), 25-33.   Google Scholar

[43]

D. L. Suthar and H. Amsalu, Certain integrals associated with the generalized Bessel-Maitland function, Appl. Appl. Math., 12 (2017), 1002-1016.   Google Scholar

[44]

D. L. Suthar, H. Amsalu and K. Godifey, Certain integrals involving multivariate Mittag-Leffler function, J. Inequal. Appl., (2019), 208–224. doi: 10.1186/s13660-019-2162-z.  Google Scholar

[45]

D. L. Suthar and M. Ayene, Generalized fractional integral formulas for the $k$-Bessel function, J. Math., (2018), 5198621, 8 pp. doi: 10.1155/2018/5198621.  Google Scholar

[46]

D. L. Suthar, D. Kumar and H. Habenom, Solutions of fractional kinetic equation associated with the generalized multi-index Bessel function via Laplace transform, Differ. Equ. Dyn. Syst., (2019). doi: 10.1007/s12591-019-00504-9.  Google Scholar

[47]

D. L. SutharS. D. Purohit and R. K. Parmar, Generalized fractional calculus of the multi-index Bessel function, Math. Nat. Sci., 1 (2017), 26-32.   Google Scholar

[48]

D. L. Suthar and T. Tsagye, Riemann-Liouville fractional integrals and differential formula involving Multi-index Bessel-function, Math. Sci. Lett., 6 (2017), 233-237.   Google Scholar

[49]

S. UllahM. A. Khan and M. Farooq, A fractional model for the dynamics of TB virus, Chaos Solitons Fractals, 116 (2018), 63-71.  doi: 10.1016/j.chaos.2018.09.001.  Google Scholar

[50]

W. WangM. A. KhanFa tmawatiP. Kumam and P. Thounthong, A comparison study of bank data in fractional calculus, Chaos Solitons Fractals, 126 (2019), 369-384.  doi: 10.1016/j.chaos.2019.07.025.  Google Scholar

[51]

G. K. Watugala, Sumudu transform: A new integral transform to solve differential equations and control engineering problems, Int. J. Math. Educ. Sci. Technol., 24 (1993), 35-43.  doi: 10.1080/0020739930240105.  Google Scholar

[52]

G. K. Watugala, The Sumudu transform for functions of two variables, Math. Eng. Ind., 8 (2002), 293-302.   Google Scholar

[53]

A. Wiman, Über den Fundamentalsatz in der Teorie der Funktionen $E_\alpha(x)$, Acta Math., 29 (1905), 191-201.  doi: 10.1007/BF02403202.  Google Scholar

[54] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge Univ. Press, Cambridge, 1962.  doi: 10.1017/CBO9780511608759.  Google Scholar
[55]

E. M. Wright, The asymptotic expansion of the generalized hypergeometric functions, J. London Math. Soc., 10 (1935), 286-293.   Google Scholar

[1]

Alberto Ibort, Alberto López-Yela. Quantum tomography and the quantum Radon transform. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021021

[2]

Yan Zhang, Peibiao Zhao, Xinghu Teng, Lei Mao. Optimal reinsurance and investment strategies for an insurer and a reinsurer under Hestons SV model: HARA utility and Legendre transform. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2139-2159. doi: 10.3934/jimo.2020062

[3]

Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021020

[4]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[5]

Shuting Chen, Zengji Du, Jiang Liu, Ke Wang. The dynamic properties of a generalized Kawahara equation with Kuramoto-Sivashinsky perturbation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021098

[6]

Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056

[7]

Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021014

[8]

Manil T. Mohan, Arbaz Khan. On the generalized Burgers-Huxley equation: Existence, uniqueness, regularity, global attractors and numerical studies. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3943-3988. doi: 10.3934/dcdsb.2020270

[9]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[10]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[11]

Kamel Hamdache, Djamila Hamroun. Macroscopic limit of the kinetic Bloch equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021015

[12]

Ethan Akin, Julia Saccamano. Generalized intransitive dice II: Partition constructions. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021005

[13]

Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018

[14]

Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada. A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks & Heterogeneous Media, 2021, 16 (2) : 187-219. doi: 10.3934/nhm.2021004

[15]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[16]

Zhenquan Zhang, Meiling Chen, Jiajun Zhang, Tianshou Zhou. Analysis of non-Markovian effects in generalized birth-death models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3717-3735. doi: 10.3934/dcdsb.2020254

[17]

Ricardo A. Podestá, Denis E. Videla. The weight distribution of irreducible cyclic codes associated with decomposable generalized Paley graphs. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021002

[18]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[19]

Davide La Torre, Simone Marsiglio, Franklin Mendivil, Fabio Privileggi. Public debt dynamics under ambiguity by means of iterated function systems on density functions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021070

[20]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3651-3682. doi: 10.3934/dcds.2021011

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (80)
  • HTML views (67)
  • Cited by (0)

[Back to Top]