
-
Previous Article
On the fuzzy stability results for fractional stochastic Volterra integral equation
- DCDS-S Home
- This Issue
-
Next Article
A wavelet method for nonlinear variable-order time fractional 2D Schrödinger equation
A robust computational framework for analyzing fractional dynamical systems
Faculty of Mathematical Sciences, Malayer University, Malayer, Iran |
This study outlines a modified implicit finite difference method for approximating the local stable manifold near a hyperbolic equilibrium point for a nonlinear systems of fractional differential equations. The fractional derivative is described in the Caputo sense of order $ \alpha\; (0<\alpha \le1) $ which is approximated based on the modified trapezoidal quadrature rule of order $ O(\triangle t ^{2-\alpha}) $. The solution existence, uniqueness and stability of the proposed method is discussed. Three numerical examples are presented and comparisons are made to confirm the reliability and effectiveness of the proposed method.
References:
[1] |
M. M. Alsuyuti, E. Z. Doha, S. S. Ezz-Eldien, B. I. Bayoumi and D. Baleanu,
Modified Galerkin algorithm for solving multitype fractional differential equations, Math. Methods Appl. Sci., 42 (2019), 1389-1412.
doi: 10.1002/mma.5431. |
[2] |
D. Baleanu, R. Darzi and B. Agheli, Existence results for Langevin equation involving Atangana-Baleanu fractional operators, Mathematics, 8 (2020), 408.
doi: 10.3390/math8030408. |
[3] |
D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional Calculus Models and Numerical Models (Series on Complexity, Nonlinearity and Chaos), Word Scientific, 2012.
doi: 10.1142/9789814355216. |
[4] |
S. Bhatter, A. Mathur, D. Kumar and J. Singh, A new analysis of fractional Drinfeld-Sokolov-Wilson model with exponential memory, Physica A., 537 (2020), 122578, 13 pp.
doi: 10.1016/j.physa.2019.122578. |
[5] |
A. Bueno-Orovio, D. Kay and K. Burrage,
Fourier spectral methods for fractional in space reaction-diffusion equations, BIT Numer. Math., 54 (2014), 937-954.
doi: 10.1007/s10543-014-0484-2. |
[6] |
Y. Chen, X. Han and L. Liu,
Numerical solution for a class of linear system of fractional differential equations by the haar wavelet method and the convergence analysis, Comput. Model. Eng. Sci., 97 (2014), 391-405.
|
[7] |
M. Dehghan and M. Safarpoor,
Application of the dual reciprocity boundary integral equation approach to solve fourth-order time-fractional partial differential equations, Int. J. Comput. Math., 95 (2018), 2066-2081.
doi: 10.1080/00207160.2017.1365141. |
[8] |
A. Deshpande and V. Daftardar-Gejji,
Local stable manifold theorem for fractional systems, Nonlinear Dynam., 83 (2016), 2435-2452.
doi: 10.1007/s11071-015-2492-4. |
[9] |
V. Daftardar-Gejji and A. Babakhani,
Analysis of a system of fractional differential equations, J. Math. Anal. Appl., 293 (2004), 511-522.
doi: 10.1016/j.jmaa.2004.01.013. |
[10] |
H. Delavari, D. Baleanu and J. Sadati,
Stability analysis of Caputo fractional order nonlinear systems revisited, Nonlinear Dyna., 67 (2012), 2433-2439.
doi: 10.1007/s11071-011-0157-5. |
[11] |
S. Esmaeili and R. Garrappa,
A pseudo-spectral scheme for the approximate solution of a time-fractional diffusion equation, Int. J. Comput. Math., 92 (2015), 980-994.
doi: 10.1080/00207160.2014.915962. |
[12] |
R. M. Ganji, H. Jafari and D. Baleanu, A new approach for solving multi variable orders differential equations with Mittag-Leffler kernel, Chaos Soltion Fract., 130 (2020), 109405, 5 pp.
doi: 10.1016/j.chaos.2019.109405. |
[13] |
M. M. Ghalib, A. A. Zafar, M. B. Riaz, Z. Hammouch and K. Shabbir, Analytical approach for the steady MHD conjugate viscous fluid flow in a porous medium with nonsingular fractional derivative, Physica A., 554 (2020), 123941, 15 pp.
doi: 10.1016/j.physa.2019.123941. |
[14] |
M. M. Ghalib, A. A. Zafar, Z. Hammouch, M. B. Riaz and K. Shabbir,
Analytical results on the unsteady rotational flow of fractional-order non-Newtonian fluids with shear stress on the boundary, Disret Contin. Dyn. S., 13 (2020), 683-693.
doi: 10.3934/dcdss.2020037. |
[15] |
R. M. Ganji, H. Jafari and D. Baleanu, A new approach for solving multi variable orders differential equations with Mittag-Leffler kernel, Chaos Soltion Fract., 130 (2020), 109405, 4 pp.
doi: 10.1016/j.chaos.2019.109405. |
[16] |
V. R. Hosseini, W. Chen and Z. Avazzadeh,
Numerical solution of fractional telegraph equation by using radial basis functions, Eng. Anal. Boundary Elements, 38 (2014), 31-39.
doi: 10.1016/j.enganabound.2013.10.009. |
[17] |
M. H. Heydari, Z. Avazzadeh, Y. Yang and C. A. Cattani,
A cardinal method to solve coupled nonlinear variable-order time fractional sine-Gordon equations, Comput. Appl.Math., 39 (2020), 2-23.
doi: 10.1007/s40314-019-0936-z. |
[18] |
P. Hartman, Ordinary Differential Equations, John Wiley and Sons, New York, 1964. |
[19] |
D. Ingman and J. Suzdalnitsky,
Control of damping oscillations by fractional differential operator with time-dependent order, Comput. Methods Appl. Mech. Eng., 193 (2004), 5585-5595.
doi: 10.1016/j.cma.2004.06.029. |
[20] |
A. Jhinga and V. Daftardar-Gejji,
A new numerical method for solving fractional delay differential equations, Comput. Appl. Math., 38 (2019), 166-184.
doi: 10.1007/s40314-019-0951-0. |
[21] |
M. M. Khader, A. Shloof and H. Ali,
On the numerical simulation and convergence study for system of non-linear fractional dynamical model of marriage, New Trends Math. Scie., 5 (2017), 130-141.
doi: 10.20852/ntmsci.2017.223. |
[22] |
D. Kumar, J. Singh and D. Baleanu,
On the analysis of vibration equation involving a fractional derivative with Mittag-Leffler law, Math. Methods Appl. Sci., 43 (2019), 443-457.
doi: 10.1002/mma.5903. |
[23] |
S. Kazem and M. Dehghan,
Semi-analytical solution for time-fractional diffusion equation based on finite difference method of lines (MOL), Eng. Comput., 35 (2019), 229-241.
doi: 10.1007/s00366-018-0595-5. |
[24] |
M. H. Kim, G. C. Ri and O. Hyong-Chol,
Operational method for solving multi-term fractional differential equations with the generalized fractional derivatives, Fract. Calculus Appl. Anal., 17 (2014), 79-95.
doi: 10.2478/s13540-014-0156-6. |
[25] |
D. Kumar, R. P. Agarwal and J. Singh,
A modified numerical scheme and conver- gence analysis for fractional model of lienard's equation, J. Comput. Appl. Math., 339 (2018), 405-413.
doi: 10.1016/j.cam.2017.03.011. |
[26] |
D. Kumar, F. Tchier, J. Singh and D. Baleanu, An efficient computational technique for fractal vehicular traffic flow, Entropy, 20 (2018), 259.
doi: 10.3390/e20040259. |
[27] |
A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006. |
[28] |
C. Li and F. Zeng, Finite difference methods for fractional differential equations, Int. J. Bifurcat Chaos, 22 (2012), 1230014, 28 pp.
doi: 10.1142/S0218127412300145. |
[29] |
Y. Li, Y. Q. Chen and I. Podlubny,
Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Comput. Math. Appl., 59 (2010), 1810-1821.
doi: 10.1016/j.camwa.2009.08.019. |
[30] |
F. Liu, P. Zhuang, I. Turner, K. Burrage and V. Anh,
A new fractional finite volume method for solving the fractional diffusion equation, Appl. Math. Model., 38 (2014), 3871-3878.
doi: 10.1016/j.apm.2013.10.007. |
[31] |
C. Li and Y. Ma,
Fractional dynamical system and its linearization theorem, Nonlinear Dynam., 71 (2013), 621-633.
doi: 10.1007/s11071-012-0601-1. |
[32] |
K. S. Miller and B. Ross, An Itroduction to the Fractional Calculus and Fractional Differential Equations, , Johan Willey and Sons, Inc. New York, 1993. |
[33] |
M. Malik and V. Kumar,
Existence, stability and controllability results of coupled fractional dynamical system on time scales, Bull. Malays. Math. Sci. Soc., 43 (2020), 3369-3394.
doi: 10.1007/s40840-019-00871-0. |
[34] |
K. M. Owolabi and Z. Hammouch, Spatiotemporal patterns in the Belousov-Zhabotinskii reaction systems with Atangana-Baleanu fractional order derivative, Physica A., 523 (2019) 1072–1090.
doi: 10.1016/j.physa.2019.04.017. |
[35] |
K. B. Oldham and J. Spanier, The Fractional Calculus, Theory and Applications of Differentiation and Integration to Arbitrary Order, Academic Press, New York, 1974.
![]() |
[36] |
I. Podlubny, Fractional Differential Equations Calculus, Academic Press, New York, 1999.
![]() |
[37] |
E. Pindza and K. M. Owolabi,
Fourier spectral method for higher order space fractional reaction-diffusion equations, Commun. Nonlinear Sci. Numer. Simulat., 40 (2016), 112-128.
doi: 10.1016/j.cnsns.2016.04.020. |
[38] |
J. Singh, D. Kumar, D. Baleanu and S. Rathore,
On the local fractional wave equation in fractal strings, Math. Methods Appl. Sci., 42 (2019), 1588-1595.
doi: 10.1002/mma.5458. |
[39] |
K. Sayevand and K. Pichaghchi,
Successive approximation: A survey on stable manifold of fractional differential systems, Fract. Calc. Appl. Anal., 18 (2015), 621-641.
doi: 10.1515/fca-2015-0038. |
[40] |
K. Sayevand and M. Rostami,
Fractional optimal control problems: optimality conditions and numerical solution, IMA J. Math. Control Info., 35 (2018), 123-148.
doi: 10.1093/imamci/dnw041. |
[41] |
K. Sayevand and M. Rostami,
General fractional variational problem depending on indefinite integrals, Numer. Algor., 72 (2016), 959-987.
doi: 10.1007/s11075-015-0076-5. |
[42] |
J. Stoer, R. Bulirsch and R. Bartels, Introduction to Numerical Analysis, Springer, 2002.
doi: 10.1007/978-0-387-21738-3. |
[43] |
K. Sayevand, J. Tenreiro Machado and V. Moradi,
A new non-standard finite difference method for analysing the fractional Navier-Stokes equations, Comput. Math. Appl., 78 (2019), 1681-1694.
doi: 10.1016/j.camwa.2018.12.016. |
[44] |
J. J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice Hall, Englewood Cliffs, New Jersey, 1991. Google Scholar |
[45] |
J. Singh, D. Kumar, D. Baleanu and S. Rathore,
An efficient numerical algorithm for the fractional Drinfeld-Sokolov-Wilson equation, Appl. Math. Comput., 335 (2018), 12-24.
doi: 10.1016/j.amc.2018.04.025. |
[46] |
V. E. Tarasov, Fractional Dynamics: Aapplications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer Science, Business Media, 2010.
doi: 10.1007/978-3-642-14003-7. |
[47] |
S. Ucar, E. Ucar, N. Ozdemir and Z. Hammouch,
Mathematical analysis and numerical simulation for a smoking model with Atangana-Baleanu derivative, Chaos Solition Fract., 118 (2019), 300-306.
doi: 10.1016/j.chaos.2018.12.003. |
[48] |
V. V. Uchaikin, Fractional Derivatives for Physicists and Engineers, Vol. 2, Springer, Berlin, 2003.
doi: 10.1007/978-3-642-33911-0. |
[49] |
J. Yu, C. Hu and H. Jiang, $\alpha$-stability and $\alpha$-synchronization for fractional-order neural networks, Neural Netw., 35 (2012), 82-87. Google Scholar |
[50] |
M. A. Zaky,
A legendre spectral quadrature tau method for the multi-term time-fractional diffusion equations, Comput. Appl. Math., 37 (2018), 3525-3538.
doi: 10.1007/s40314-017-0530-1. |
[51] |
X. Zhang, C. Zhu and Z. Wu,
Solvability for a coupled system of fractional differential equations with impulses at resonance, Bound. Value Probl., 2013 (2013), 80-103.
doi: 10.1186/1687-2770-2013-80. |
show all references
References:
[1] |
M. M. Alsuyuti, E. Z. Doha, S. S. Ezz-Eldien, B. I. Bayoumi and D. Baleanu,
Modified Galerkin algorithm for solving multitype fractional differential equations, Math. Methods Appl. Sci., 42 (2019), 1389-1412.
doi: 10.1002/mma.5431. |
[2] |
D. Baleanu, R. Darzi and B. Agheli, Existence results for Langevin equation involving Atangana-Baleanu fractional operators, Mathematics, 8 (2020), 408.
doi: 10.3390/math8030408. |
[3] |
D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional Calculus Models and Numerical Models (Series on Complexity, Nonlinearity and Chaos), Word Scientific, 2012.
doi: 10.1142/9789814355216. |
[4] |
S. Bhatter, A. Mathur, D. Kumar and J. Singh, A new analysis of fractional Drinfeld-Sokolov-Wilson model with exponential memory, Physica A., 537 (2020), 122578, 13 pp.
doi: 10.1016/j.physa.2019.122578. |
[5] |
A. Bueno-Orovio, D. Kay and K. Burrage,
Fourier spectral methods for fractional in space reaction-diffusion equations, BIT Numer. Math., 54 (2014), 937-954.
doi: 10.1007/s10543-014-0484-2. |
[6] |
Y. Chen, X. Han and L. Liu,
Numerical solution for a class of linear system of fractional differential equations by the haar wavelet method and the convergence analysis, Comput. Model. Eng. Sci., 97 (2014), 391-405.
|
[7] |
M. Dehghan and M. Safarpoor,
Application of the dual reciprocity boundary integral equation approach to solve fourth-order time-fractional partial differential equations, Int. J. Comput. Math., 95 (2018), 2066-2081.
doi: 10.1080/00207160.2017.1365141. |
[8] |
A. Deshpande and V. Daftardar-Gejji,
Local stable manifold theorem for fractional systems, Nonlinear Dynam., 83 (2016), 2435-2452.
doi: 10.1007/s11071-015-2492-4. |
[9] |
V. Daftardar-Gejji and A. Babakhani,
Analysis of a system of fractional differential equations, J. Math. Anal. Appl., 293 (2004), 511-522.
doi: 10.1016/j.jmaa.2004.01.013. |
[10] |
H. Delavari, D. Baleanu and J. Sadati,
Stability analysis of Caputo fractional order nonlinear systems revisited, Nonlinear Dyna., 67 (2012), 2433-2439.
doi: 10.1007/s11071-011-0157-5. |
[11] |
S. Esmaeili and R. Garrappa,
A pseudo-spectral scheme for the approximate solution of a time-fractional diffusion equation, Int. J. Comput. Math., 92 (2015), 980-994.
doi: 10.1080/00207160.2014.915962. |
[12] |
R. M. Ganji, H. Jafari and D. Baleanu, A new approach for solving multi variable orders differential equations with Mittag-Leffler kernel, Chaos Soltion Fract., 130 (2020), 109405, 5 pp.
doi: 10.1016/j.chaos.2019.109405. |
[13] |
M. M. Ghalib, A. A. Zafar, M. B. Riaz, Z. Hammouch and K. Shabbir, Analytical approach for the steady MHD conjugate viscous fluid flow in a porous medium with nonsingular fractional derivative, Physica A., 554 (2020), 123941, 15 pp.
doi: 10.1016/j.physa.2019.123941. |
[14] |
M. M. Ghalib, A. A. Zafar, Z. Hammouch, M. B. Riaz and K. Shabbir,
Analytical results on the unsteady rotational flow of fractional-order non-Newtonian fluids with shear stress on the boundary, Disret Contin. Dyn. S., 13 (2020), 683-693.
doi: 10.3934/dcdss.2020037. |
[15] |
R. M. Ganji, H. Jafari and D. Baleanu, A new approach for solving multi variable orders differential equations with Mittag-Leffler kernel, Chaos Soltion Fract., 130 (2020), 109405, 4 pp.
doi: 10.1016/j.chaos.2019.109405. |
[16] |
V. R. Hosseini, W. Chen and Z. Avazzadeh,
Numerical solution of fractional telegraph equation by using radial basis functions, Eng. Anal. Boundary Elements, 38 (2014), 31-39.
doi: 10.1016/j.enganabound.2013.10.009. |
[17] |
M. H. Heydari, Z. Avazzadeh, Y. Yang and C. A. Cattani,
A cardinal method to solve coupled nonlinear variable-order time fractional sine-Gordon equations, Comput. Appl.Math., 39 (2020), 2-23.
doi: 10.1007/s40314-019-0936-z. |
[18] |
P. Hartman, Ordinary Differential Equations, John Wiley and Sons, New York, 1964. |
[19] |
D. Ingman and J. Suzdalnitsky,
Control of damping oscillations by fractional differential operator with time-dependent order, Comput. Methods Appl. Mech. Eng., 193 (2004), 5585-5595.
doi: 10.1016/j.cma.2004.06.029. |
[20] |
A. Jhinga and V. Daftardar-Gejji,
A new numerical method for solving fractional delay differential equations, Comput. Appl. Math., 38 (2019), 166-184.
doi: 10.1007/s40314-019-0951-0. |
[21] |
M. M. Khader, A. Shloof and H. Ali,
On the numerical simulation and convergence study for system of non-linear fractional dynamical model of marriage, New Trends Math. Scie., 5 (2017), 130-141.
doi: 10.20852/ntmsci.2017.223. |
[22] |
D. Kumar, J. Singh and D. Baleanu,
On the analysis of vibration equation involving a fractional derivative with Mittag-Leffler law, Math. Methods Appl. Sci., 43 (2019), 443-457.
doi: 10.1002/mma.5903. |
[23] |
S. Kazem and M. Dehghan,
Semi-analytical solution for time-fractional diffusion equation based on finite difference method of lines (MOL), Eng. Comput., 35 (2019), 229-241.
doi: 10.1007/s00366-018-0595-5. |
[24] |
M. H. Kim, G. C. Ri and O. Hyong-Chol,
Operational method for solving multi-term fractional differential equations with the generalized fractional derivatives, Fract. Calculus Appl. Anal., 17 (2014), 79-95.
doi: 10.2478/s13540-014-0156-6. |
[25] |
D. Kumar, R. P. Agarwal and J. Singh,
A modified numerical scheme and conver- gence analysis for fractional model of lienard's equation, J. Comput. Appl. Math., 339 (2018), 405-413.
doi: 10.1016/j.cam.2017.03.011. |
[26] |
D. Kumar, F. Tchier, J. Singh and D. Baleanu, An efficient computational technique for fractal vehicular traffic flow, Entropy, 20 (2018), 259.
doi: 10.3390/e20040259. |
[27] |
A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006. |
[28] |
C. Li and F. Zeng, Finite difference methods for fractional differential equations, Int. J. Bifurcat Chaos, 22 (2012), 1230014, 28 pp.
doi: 10.1142/S0218127412300145. |
[29] |
Y. Li, Y. Q. Chen and I. Podlubny,
Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Comput. Math. Appl., 59 (2010), 1810-1821.
doi: 10.1016/j.camwa.2009.08.019. |
[30] |
F. Liu, P. Zhuang, I. Turner, K. Burrage and V. Anh,
A new fractional finite volume method for solving the fractional diffusion equation, Appl. Math. Model., 38 (2014), 3871-3878.
doi: 10.1016/j.apm.2013.10.007. |
[31] |
C. Li and Y. Ma,
Fractional dynamical system and its linearization theorem, Nonlinear Dynam., 71 (2013), 621-633.
doi: 10.1007/s11071-012-0601-1. |
[32] |
K. S. Miller and B. Ross, An Itroduction to the Fractional Calculus and Fractional Differential Equations, , Johan Willey and Sons, Inc. New York, 1993. |
[33] |
M. Malik and V. Kumar,
Existence, stability and controllability results of coupled fractional dynamical system on time scales, Bull. Malays. Math. Sci. Soc., 43 (2020), 3369-3394.
doi: 10.1007/s40840-019-00871-0. |
[34] |
K. M. Owolabi and Z. Hammouch, Spatiotemporal patterns in the Belousov-Zhabotinskii reaction systems with Atangana-Baleanu fractional order derivative, Physica A., 523 (2019) 1072–1090.
doi: 10.1016/j.physa.2019.04.017. |
[35] |
K. B. Oldham and J. Spanier, The Fractional Calculus, Theory and Applications of Differentiation and Integration to Arbitrary Order, Academic Press, New York, 1974.
![]() |
[36] |
I. Podlubny, Fractional Differential Equations Calculus, Academic Press, New York, 1999.
![]() |
[37] |
E. Pindza and K. M. Owolabi,
Fourier spectral method for higher order space fractional reaction-diffusion equations, Commun. Nonlinear Sci. Numer. Simulat., 40 (2016), 112-128.
doi: 10.1016/j.cnsns.2016.04.020. |
[38] |
J. Singh, D. Kumar, D. Baleanu and S. Rathore,
On the local fractional wave equation in fractal strings, Math. Methods Appl. Sci., 42 (2019), 1588-1595.
doi: 10.1002/mma.5458. |
[39] |
K. Sayevand and K. Pichaghchi,
Successive approximation: A survey on stable manifold of fractional differential systems, Fract. Calc. Appl. Anal., 18 (2015), 621-641.
doi: 10.1515/fca-2015-0038. |
[40] |
K. Sayevand and M. Rostami,
Fractional optimal control problems: optimality conditions and numerical solution, IMA J. Math. Control Info., 35 (2018), 123-148.
doi: 10.1093/imamci/dnw041. |
[41] |
K. Sayevand and M. Rostami,
General fractional variational problem depending on indefinite integrals, Numer. Algor., 72 (2016), 959-987.
doi: 10.1007/s11075-015-0076-5. |
[42] |
J. Stoer, R. Bulirsch and R. Bartels, Introduction to Numerical Analysis, Springer, 2002.
doi: 10.1007/978-0-387-21738-3. |
[43] |
K. Sayevand, J. Tenreiro Machado and V. Moradi,
A new non-standard finite difference method for analysing the fractional Navier-Stokes equations, Comput. Math. Appl., 78 (2019), 1681-1694.
doi: 10.1016/j.camwa.2018.12.016. |
[44] |
J. J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice Hall, Englewood Cliffs, New Jersey, 1991. Google Scholar |
[45] |
J. Singh, D. Kumar, D. Baleanu and S. Rathore,
An efficient numerical algorithm for the fractional Drinfeld-Sokolov-Wilson equation, Appl. Math. Comput., 335 (2018), 12-24.
doi: 10.1016/j.amc.2018.04.025. |
[46] |
V. E. Tarasov, Fractional Dynamics: Aapplications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer Science, Business Media, 2010.
doi: 10.1007/978-3-642-14003-7. |
[47] |
S. Ucar, E. Ucar, N. Ozdemir and Z. Hammouch,
Mathematical analysis and numerical simulation for a smoking model with Atangana-Baleanu derivative, Chaos Solition Fract., 118 (2019), 300-306.
doi: 10.1016/j.chaos.2018.12.003. |
[48] |
V. V. Uchaikin, Fractional Derivatives for Physicists and Engineers, Vol. 2, Springer, Berlin, 2003.
doi: 10.1007/978-3-642-33911-0. |
[49] |
J. Yu, C. Hu and H. Jiang, $\alpha$-stability and $\alpha$-synchronization for fractional-order neural networks, Neural Netw., 35 (2012), 82-87. Google Scholar |
[50] |
M. A. Zaky,
A legendre spectral quadrature tau method for the multi-term time-fractional diffusion equations, Comput. Appl. Math., 37 (2018), 3525-3538.
doi: 10.1007/s40314-017-0530-1. |
[51] |
X. Zhang, C. Zhu and Z. Wu,
Solvability for a coupled system of fractional differential equations with impulses at resonance, Bound. Value Probl., 2013 (2013), 80-103.
doi: 10.1186/1687-2770-2013-80. |



Ref. [39] | Ref. [39] | |||||
0.00824 | 0.00835 | 0.00010 | -0.00002 | -0.00003 | 0.00000 | |
0.00744 | 0.00753 | 0.00009 | -0.00002 | -0.00005 | 0.00003 | |
0.00697 | 0.00705 | 0.00008 | -0.00002 | -0.00008 | 0.00006 | |
0.00663 | 0.00676 | 0.00012 | -0.00002 | -0.00012 | 0.00009 | |
0.00638 | 0.00655 | 0.00017 | -0.00001 | -0.00017 | 0.00015 | |
0.00617 | 0.00637 | 0.00020 | -0.00001 | -0.0.00024 | 0.00022 | |
0.00605 | 0.00627 | 0.00021 | -0.00001 | -0.00030 | -0.00028 |
Ref. [39] | Ref. [39] | |||||
0.00824 | 0.00835 | 0.00010 | -0.00002 | -0.00003 | 0.00000 | |
0.00744 | 0.00753 | 0.00009 | -0.00002 | -0.00005 | 0.00003 | |
0.00697 | 0.00705 | 0.00008 | -0.00002 | -0.00008 | 0.00006 | |
0.00663 | 0.00676 | 0.00012 | -0.00002 | -0.00012 | 0.00009 | |
0.00638 | 0.00655 | 0.00017 | -0.00001 | -0.00017 | 0.00015 | |
0.00617 | 0.00637 | 0.00020 | -0.00001 | -0.0.00024 | 0.00022 | |
0.00605 | 0.00627 | 0.00021 | -0.00001 | -0.00030 | -0.00028 |
Ref. [39] | Ref. [39] | |||||
0.03226 | 0.03276 | 0.00049 | -0.00037 | -0.00029 | 0.00007 | |
0.02539 | 0.02596 | 0.00056 | -0.00025 | -0.00014 | 0.00011 | |
0.02109 | 0.02170 | 0.00060 | -0.00019 | -0.00007 | 0.00011 | |
0.01808 | 0.01884 | 0.00076 | -0.00015 | -0.00004 | 0.00011 | |
0.01584 | 0.01683 | 0.00098 | -0.00013 | -0.00003 | 0.00010 | |
0.01411 | 0.01523 | 0.00111 | -0.00011 | -0.00002 | 0.00008 | |
0.01315 | 0.01432 | 0.00116 | -0.00010 | -0.00002 | 0.00007 |
Ref. [39] | Ref. [39] | |||||
0.03226 | 0.03276 | 0.00049 | -0.00037 | -0.00029 | 0.00007 | |
0.02539 | 0.02596 | 0.00056 | -0.00025 | -0.00014 | 0.00011 | |
0.02109 | 0.02170 | 0.00060 | -0.00019 | -0.00007 | 0.00011 | |
0.01808 | 0.01884 | 0.00076 | -0.00015 | -0.00004 | 0.00011 | |
0.01584 | 0.01683 | 0.00098 | -0.00013 | -0.00003 | 0.00010 | |
0.01411 | 0.01523 | 0.00111 | -0.00011 | -0.00002 | 0.00008 | |
0.01315 | 0.01432 | 0.00116 | -0.00010 | -0.00002 | 0.00007 |
Ref. [39] | Ref. [39] | Ref. [39] | |||||||
0.01064 | 0.01075 | 0.0011 | 0.01092 | 0.01101 | 0.0009 | 0.00000 | 0.00000 | 0.00000 | |
0.00994 | 0.01003 | 0.00009 | 0.00997 | 0.00998 | 0.00001 | 0.00000 | 0.00000 | 0.00000 | |
0.00952 | 0.00960 | 0.00007 | 0.00943 | 0.00941 | 0.00002 | 0.00000 | 0.00000 | 0.00000 | |
0.00923 | 0.00935 | 0.00012 | 0.00907 | 0.00907 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | |
0.00901 | 0.00917 | 0.00016 | 0.00879 | 0.00880 | 0.00001 | 0.00000 | 0.00000 | 0.00000 | |
0.00882 | 0.00901 | 0.00018 | 0.00856 | 0.00859 | 0.00002 | 0.00000 | 0.00001 | 0.00001 | |
0.00872 | 0.00891 | 0.00019 | 0.00843 | 0.00846 | 0.00002 | 0.00000 | -0.00001 | 0.00001 |
Ref. [39] | Ref. [39] | Ref. [39] | |||||||
0.01064 | 0.01075 | 0.0011 | 0.01092 | 0.01101 | 0.0009 | 0.00000 | 0.00000 | 0.00000 | |
0.00994 | 0.01003 | 0.00009 | 0.00997 | 0.00998 | 0.00001 | 0.00000 | 0.00000 | 0.00000 | |
0.00952 | 0.00960 | 0.00007 | 0.00943 | 0.00941 | 0.00002 | 0.00000 | 0.00000 | 0.00000 | |
0.00923 | 0.00935 | 0.00012 | 0.00907 | 0.00907 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | |
0.00901 | 0.00917 | 0.00016 | 0.00879 | 0.00880 | 0.00001 | 0.00000 | 0.00000 | 0.00000 | |
0.00882 | 0.00901 | 0.00018 | 0.00856 | 0.00859 | 0.00002 | 0.00000 | 0.00001 | 0.00001 | |
0.00872 | 0.00891 | 0.00019 | 0.00843 | 0.00846 | 0.00002 | 0.00000 | -0.00001 | 0.00001 |
Ref. [39] | Ref. [39] | Ref. [39] | |||||||
0.01416 | 0.01434 | 0.00018 | 0.00515 | 0.00536 | 0.00020 | 0.00000 | 0.00000 | 0.00000 | |
0.01062 | 0.01090 | 0.00028 | 0.00305 | 0.00327 | 0.00021 | 0.00000 | 0.00000 | 0.00000 | |
0.00817 | 0.00849 | 0.00031 | 0.00194 | 0.00211 | 0.00016 | 0.00000 | 0.00000 | 0.00000 | |
0.00640 | 0.00675 | 0.00034 | 0.00132 | 0.00144 | 0.00012 | 0.00000 | 0.00000 | 0.00000 | |
0.00511 | 0.00547 | 0.00036 | 0.00095 | 0.00104 | 0.00008 | 0.00000 | 0.00000 | 0.00000 | |
0.00413 | 0.00450 | 0.00037 | 0.00072 | 0.00078 | 0.00006 | 0.00000 | 0.00000 | 0.00000 | |
0.00362 | 0.00398 | 0.00036 | 0.00061 | 0.00066 | 0.00004 | 0.00000 | 0.00000 | 0.00000 |
Ref. [39] | Ref. [39] | Ref. [39] | |||||||
0.01416 | 0.01434 | 0.00018 | 0.00515 | 0.00536 | 0.00020 | 0.00000 | 0.00000 | 0.00000 | |
0.01062 | 0.01090 | 0.00028 | 0.00305 | 0.00327 | 0.00021 | 0.00000 | 0.00000 | 0.00000 | |
0.00817 | 0.00849 | 0.00031 | 0.00194 | 0.00211 | 0.00016 | 0.00000 | 0.00000 | 0.00000 | |
0.00640 | 0.00675 | 0.00034 | 0.00132 | 0.00144 | 0.00012 | 0.00000 | 0.00000 | 0.00000 | |
0.00511 | 0.00547 | 0.00036 | 0.00095 | 0.00104 | 0.00008 | 0.00000 | 0.00000 | 0.00000 | |
0.00413 | 0.00450 | 0.00037 | 0.00072 | 0.00078 | 0.00006 | 0.00000 | 0.00000 | 0.00000 | |
0.00362 | 0.00398 | 0.00036 | 0.00061 | 0.00066 | 0.00004 | 0.00000 | 0.00000 | 0.00000 |
Ref. [8] | Ref. [8] | Ref. [8] | |||||||
0.00064 | 0.00065 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | -0.00020 | 0.00000 | 0.00000 | |
0.00051 | 0.00052 | 0.00001 | 0.00000 | 0.00000 | 0.00000 | -0.00020 | 0.00000 | 0.00000 | |
0.00042 | 0.00043 | 0.00001 | 0.00000 | 0.00000 | 0.00000 | -0.00020 | 0.00000 | 0.00000 | |
0.00036 | 0.00037 | 0.00001 | 0.00001 | 0.00001 | 0.00000 | -0.00020 | 0.00000 | -0.00001 | |
0.00031 | 0.00033 | 0.00002 | 0.00002 | 0.00003 | 0.00001 | -0.00021 | 0.00000 | -0.00003 | |
0.00028 | 0.00030 | 0.00002 | 0.00005 | 0.00009 | 0.00003 | -0.00022 | 0.00002 | -0.00007 | |
0.00026 | 0.00028 | 0.00002 | 0.00009 | 0.00016 | 0.00006 | -0.00024 | -0.00003 | -0.00012 |
Ref. [8] | Ref. [8] | Ref. [8] | |||||||
0.00064 | 0.00065 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | -0.00020 | 0.00000 | 0.00000 | |
0.00051 | 0.00052 | 0.00001 | 0.00000 | 0.00000 | 0.00000 | -0.00020 | 0.00000 | 0.00000 | |
0.00042 | 0.00043 | 0.00001 | 0.00000 | 0.00000 | 0.00000 | -0.00020 | 0.00000 | 0.00000 | |
0.00036 | 0.00037 | 0.00001 | 0.00001 | 0.00001 | 0.00000 | -0.00020 | 0.00000 | -0.00001 | |
0.00031 | 0.00033 | 0.00002 | 0.00002 | 0.00003 | 0.00001 | -0.00021 | 0.00000 | -0.00003 | |
0.00028 | 0.00030 | 0.00002 | 0.00005 | 0.00009 | 0.00003 | -0.00022 | 0.00002 | -0.00007 | |
0.00026 | 0.00028 | 0.00002 | 0.00009 | 0.00016 | 0.00006 | -0.00024 | -0.00003 | -0.00012 |
[1] |
Xiaozhong Yang, Xinlong Liu. Numerical analysis of two new finite difference methods for time-fractional telegraph equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3921-3942. doi: 10.3934/dcdsb.2020269 |
[2] |
Hongsong Feng, Shan Zhao. A multigrid based finite difference method for solving parabolic interface problem. Electronic Research Archive, , () : -. doi: 10.3934/era.2021031 |
[3] |
Jinye Shen, Xian-Ming Gu. Two finite difference methods based on an H2N2 interpolation for two-dimensional time fractional mixed diffusion and diffusion-wave equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021086 |
[4] |
Iman Malmir. Caputo fractional derivative operational matrices of legendre and chebyshev wavelets in fractional delay optimal control. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021013 |
[5] |
Tianhu Yu, Jinde Cao, Chuangxia Huang. Finite-time cluster synchronization of coupled dynamical systems with impulsive effects. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3595-3620. doi: 10.3934/dcdsb.2020248 |
[6] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
[7] |
Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002 |
[8] |
Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3093-3108. doi: 10.3934/dcds.2020399 |
[9] |
Assia Boubidi, Sihem Kechida, Hicham Tebbikh. Analytical study of resonance regions for second kind commensurate fractional systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3579-3594. doi: 10.3934/dcdsb.2020247 |
[10] |
Brahim Alouini. Finite dimensional global attractor for a class of two-coupled nonlinear fractional Schrödinger equations. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021013 |
[11] |
Haili Qiao, Aijie Cheng. A fast high order method for time fractional diffusion equation with non-smooth data. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021073 |
[12] |
Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2653-2676. doi: 10.3934/dcds.2020379 |
[13] |
Tadeusz Kaczorek, Andrzej Ruszewski. Analysis of the fractional descriptor discrete-time linear systems by the use of the shuffle algorithm. Journal of Computational Dynamics, 2021 doi: 10.3934/jcd.2021007 |
[14] |
Maoding Zhen, Binlin Zhang, Xiumei Han. A new approach to get solutions for Kirchhoff-type fractional Schrödinger systems involving critical exponents. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021115 |
[15] |
Maha Daoud, El Haj Laamri. Fractional Laplacians : A short survey. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021027 |
[16] |
Azmeer Nordin, Mohd Salmi Md Noorani. Counting finite orbits for the flip systems of shifts of finite type. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021046 |
[17] |
George A. Anastassiou. Iyengar-Hilfer fractional inequalities. Mathematical Foundations of Computing, 2021 doi: 10.3934/mfc.2021004 |
[18] |
Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166 |
[19] |
Dingheng Pi. Periodic orbits for double regularization of piecewise smooth systems with a switching manifold of codimension two. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021080 |
[20] |
Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]