[1]
|
G. Cottone, M. D. Paola and S. Butera, Stochastic dynamics of nonlinear systems with a fractional power-law nonlinear term: The fractional calculus approach, Probabilistic Engineering Mechanics, 26 (2011), 101-108.
doi: 10.1016/j.probengmech.2010.06.010.
|
[2]
|
N. Bellomo, Z. Brzezniak and L. M. de Socio, Nonlinear Stochastic Evolution Problems in Applied Sciences, Kluwer Academic Publishers, Springer, Dordrecht, 1992.
doi: 10.1007/978-94-011-1820-0.
|
[3]
|
R. Aboulaich, A. Darouichi, I. Elmouki and A. Jraifi, A stochastic optimal control model for BCG immunotherapy in superficial bladder cancer, Math. Model. Nat. Phenom., 12 (2017), 99-119.
doi: 10.1051/mmnp/201712507.
|
[4]
|
J. Yang, Y. Tan and R. A. Cheke, Thresholds for extinction and proliferation in a stochastic tumour-immune model with pulsed comprehensive therapy, Commun. Nonlinear. Sci. Numer. Simulat., 73 (2019), 363-378.
doi: 10.1016/j.cnsns.2019.02.025.
|
[5]
|
S. Jerez, S. Diaz-Infante and B. Chen, Fluctuating periodic solutions and moment boundedness of a stochastic model for the bone remodeling process, Mathematical Biosciences, 299 (2018), 153-164.
doi: 10.1016/j.mbs.2018.03.006.
|
[6]
|
S. Singh and S. S. Ray, Numerical solutions of stochastic Fisher equation to study migration and population behavior in biological invasion, Int. J. Biomath., 10 (2017), 1750103.
doi: 10.1142/S1793524517501030.
|
[7]
|
W. Padgett and C. Tsokos, A new stochastic formulation of a population growth problem, Mathematical Biosciences, 17 (1973), 105-120.
doi: 10.1016/0025-5564(73)90064-3.
|
[8]
|
G. I. Zmievskaya, A. L. Bondareva, T. V. Levchenko and G. Maino, Computational stochastic model of ions implantation, AIP Conf. Proc., (2015), 1648: 230003.
doi: 10.1063/1.4912495.
|
[9]
|
B. Oksendal, Stochastic Differential Equations, An Introduction with Applications, 5$^th$ edition, Springer-Verlag, New York, 1998.
doi: 10.1007/978-3-662-03620-4.
|
[10]
|
X. Chen, P. Hu, S. Shum and Y. Zhang, Dynamic stochastic inventory management with reference price effects, Oper. Res., 64 (2016), 1529-1536.
doi: 10.1287/opre.2016.1524.
|
[11]
|
A. N. Huu and B. Costa-Lima, Orbits in a stochastic Goodwin-Lotka-Volterra model, Journal of Mathematical Analysis and Applications, 419 (2014), 48-67.
doi: 10.1016/j.jmaa.2014.04.035.
|
[12]
|
F. Klebaner, Introduction to Stochastic Calculus with Applications, 2nd edition, Imperial College Press, 2005.
doi: 10.1142/p386.
|
[13]
|
D. Henderson and P. Plaschko, Differential Equation in Science and Engineering, Provo Utah, USA, Mexico CityDF, 2006.
doi: 10.1142/9789812774798.
|
[14]
|
G. Chen and T. Li, Stability of stochastic delayed SIR model, Stochastics and Dynamics, 22 (2009), 231-252.
doi: 10.1142/S0219493709002658.
|
[15]
|
B. Lian and S. Hu, Stochastic delay Gilpin-Ayala competition models, Stochastics and Dynamics, 6 (2006), 561-576.
doi: 10.1142/S0219493706001888.
|
[16]
|
W. Mao, S. You, X. Wu and X. Mao, On the averaging principle for stochastic delay differential equations with jumps, Advances in Difference Equations, 2015 (2015), 1-19.
doi: 10.1186/s13662-015-0411-0.
|
[17]
|
G. Shevchenko, Mixed stochastic delay differential equations, Theory of Probability and Mathematical Statistics, 89 (2014), 181-195.
doi: 10.1090/S0094-9000-2015-00944-3.
|
[18]
|
M. Milosevic, An explicit analytic approximation of solutions for a class of neutral stochastic differential equations with time-dependent delay based on Taylor expansion, Applied Mathematics and Computation, 274 (2016), 745-761.
doi: 10.1016/j.amc.2015.11.026.
|
[19]
|
E. Buckwar, Introduction to the numerical analysis of stochastic delay differential equations, Journal of Computational and Applied Mathematics, 125 (2000), 297-307.
doi: 10.1016/S0377-0427(00)00475-1.
|
[20]
|
I. Podlubny, Fractional differential equations, Math. Sci. Eng., 198 (1998).
|
[21]
|
A. Babaei, H. Jafari and S. Banihashemi, Numerical solution of variable order fractional nonlinear quadratic integro-differential equations based on the sixth-kind Chebyshev collocation method, Journal of Computational and Applied Mathematics, 377 (2020), 112908.
doi: 10.1016/j.cam.2020.112908.
|
[22]
|
C. Angstmann, A. M. Erickson, B. I. Henry, A. V. McGann, J. M. Murray and J. Nichols, Fractional order compartment models, SIAM Journal on Applied Mathematics, 77 (2017), 430-446.
doi: 10.1137/16M1069249.
|
[23]
|
A. Babaei, B. Parsa Moghaddam, S. Banihashemi and J. A. Tenreiro Machado, Numerical solution of variable-order fractional integro-partial differential equations via Sinc collocation method based on single and double exponential transformations, Communications in Nonlinear Science and Numerical Simulation, 82 (2019), 104985.
doi: 10.1016/j.cnsns.2019.104985.
|
[24]
|
R. M. Ganji, H. Jafari and S. Nemati, A new approach for solving integro-differential equations of variable order, Journal of Computational and Applied Mathematics, 379 (2020), 112946.
doi: 10.1016/j.cam.2020.112946.
|
[25]
|
A. Babaei and S. Banihashemi, Reconstructing unknown nonlinear boundary conditions in a time-fractional inverse reaction-diffusion-convection problem, Numerical Methods for Partial Differential Equations, 35 (2019), 976-992.
doi: 10.1002/num.22334.
|
[26]
|
M. Izadi and C. Cattani, Generalized Bessel polynomial for multi-order fractional differential equations, Symmetry, 12 (2020), 1260.
doi: 10.3390/sym12081260.
|
[27]
|
D. N. Tien, Fractional stochastic differential equations with applications to finance, J. Math. Anal. Appl., 397 (2013), 334-348.
doi: 10.1016/j.jmaa.2012.07.062.
|
[28]
|
Z. G. Yu, V. Anh, Y. Wang, D. Mao and J. Wanliss, Modeling and simulation of the horizontal component of the geomagnetic field by fractional stochastic differential equations in conjunction with empirical mode decomposition, J. Geophys. Res. Space Phys., 115 (2010).
doi: 10.1029/2009JA015206.
|
[29]
|
E. Abdel-Rehim, From the Ehrenfest model to time-fractional stochastic processes, J. Comput. Appl. Math., 233 (2009), 197-207.
doi: 10.1016/j.cam.2009.07.010.
|
[30]
|
A. Babaei, H. Jafari and S. Banihashemi, A collocation approach for solving time-fractional stochastic heat equation driven by an additive noise, Symmetry, 12 (2020), 904.
doi: 10.3390/sym12060904.
|
[31]
|
T. S. Doan, P. T. Huong, P. E. Kloeden and H. T. Tuana, Asymptotic separation between solutions of Caputo fractional stochastic differential equations, Stochastic Analysis and Applications, 36 (2018), 1-11.
doi: 10.1080/07362994.2018.1440243.
|
[32]
|
L. Liu and T. Caraballo, Well-posedness and dynamics of a fractional stochastic integro-differential equation, Physica D, 355 (2017), 45-57.
doi: 10.1016/j.physd.2017.05.006.
|
[33]
|
B. P. Moghaddam, L. Zhang, A. M. Lopes, J. A. Tenreiro Machado and Z. S. Mostaghim, Sufficient conditions for existence and uniqueness of fractional stochastic delay differential equations, An International Journal of Probability and Stochastic Processes, 92 (2020), 379-396.
doi: 10.1080/17442508.2019.1625903.
|
[34]
|
E. Wong and M. Zakai, On the relation between ordinary and stochastic differential equations, Int. J. Eng. Sci., 3 (1965), 213-229.
doi: 10.1016/0020-7225(65)90045-5.
|
[35]
|
E. Wong and M. Zakai, On the convergence of ordinary integrals to stochastic integrals, Ann. Math. Statist., 36 (1965), 1560-1564.
doi: 10.1214/aoms/1177699916.
|
[36]
|
X. Wang, S. Gan and D. Wang, $ \theta $-Maruyama methods for nonlinear stochastic differential delay equations, Appl. Numer. Math., 98 (2015), 38-58.
doi: 10.1016/j.apnum.2015.08.004.
|
[37]
|
B. P. Moghaddam, L. Zhang, A. M. Lopes, J. A. T. Machado and Z. S. Mostaghim, Computational scheme for solving nonlinear fractional stochastic differential equations with delay, Stochastic Analysis and Applications, 37 (2019), 893-908.
doi: 10.1080/07362994.2019.1621182.
|
[38]
|
I. J. Gyongy and T. Martinez, On numerical solution of stochastic partial differential equations of elliptic type, Stochastics: An International Journal of Probability and Stochastic Processes, 78 (2006), 213-231.
doi: 10.1080/17442500600805047.
|
[39]
|
C. Roth, A combination of finite difference and Wong-Zakai methods for hyperbolic stochastic partial differential equations, Stoch. Anal. Appl., 24 (2006), 221-240.
doi: 10.1080/07362990500397764.
|
[40]
|
J. B.Walsh, On numerical solutions of the stochastic wave equation, Illinois J. Math., 50 (2006), 991-1018.
|
[41]
|
Q. Du and T. Zhang, Numerical approximation of some linear stochastic partial differential equations driven by special additive noises, SIAM J. Numer. Anal., 40 (2002), 1421-1445.
doi: 10.1137/S0036142901387956.
|
[42]
|
M. H. Heydari, M. R. Hooshmandasl, G. B. Loghmani and C. Cattani, Wavelets Galerkin method for solving stochastic heat equation, International Journal of Computer Mathematics, 93 (2016), 1579-1596.
doi: 10.1080/00207160.2015.1067311.
|
[43]
|
F. Mirzaee and E. Hadadiyan, Solving system of linear Stratonovich Volterra integral equations via modification of hat functions, Applied Mathematics and Computation, 293 (2017), 254-264.
doi: 10.1016/j.amc.2016.08.016.
|
[44]
|
Q. Li, T. Kang and Q. Zhang, Mean-square dissipative methods for stochastic agedependent capital system with fractional Brownian motion and jumps, Appl. Math. Comput., 339 (2018), 81-92.
doi: 10.1016/j.amc.2018.07.018.
|
[45]
|
C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods: Fundamentals in Single Domains, Springer-Verlag, 2006.
|
[46]
|
X. Zhong, S. Guo and M. Peng, Stability of stochastic SIRS epidemic models with saturated incidence rates and delay, Stochastic Analysis and Applications, 35 (2017), 1-26.
doi: 10.1080/07362994.2016.1244644.
|