doi: 10.3934/dcdss.2021027
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Fractional Laplacians : A short survey

1. 

Department of Mathematics and Computer Science, Faculty of sciences Aïn Chock, B.P. 5366 Maarif, Casablanca, Morocco

2. 

Institut Elie Cartan de Lorraine, Université de Lorraine, B.P. 239, Vandoeuvre-lès-Nancy, France

* Corresponding author : El Haj Laamri

Received  August 2020 Revised  December 2020 Early access March 2021

This paper describes the state of the art and gives a survey of the wide literature published in the last years on the fractional Laplacian. We will first recall some definitions of this operator in $ \mathbb{R}^N $ and its main properties. Then, we will introduce the four main operators often used in the case of a bounded domain; and we will give several simple and significant examples to highlight the difference between these four operators. Also we give a rather long list of references : it is certainly not exhaustive but hopefully rich enough to track most connected results. We hope that this short survey will be useful for young researchers of all ages who wish to have a quick idea of the fractional Laplacian(s).

Citation: Maha Daoud, El Haj Laamri. Fractional Laplacians : A short survey. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2021027
References:
[1]

N. Abatangelo, Large solutions for fractional Laplacian Operators, Ph.D thesis, 2015. Google Scholar

[2]

N. Abatangelo and L. Dupaigne, Nonhomogeneous boundary conditions for the spectral fractional Laplacian, Ann. Inst. H. Poincaré Anal. Non Linéaire 34 (2), (2017), 439–467. doi: 10.1016/j.anihpc.2016.02.001.  Google Scholar

[3]

B. Abdellaoui, K. Biroud and E.-H. Laamri, Existence et nonexistence of positive solutions to a fractional parabolic problem with singular weight at the boundary, To appear in Journal of Evolution Equations. Google Scholar

[4]

G. AcostaJ. P. BorthagarayO. Bruno and M. Maas, Regularity theory and high order numerical methods for the (1d)-fractional Laplacian, Mathematics of Computation, 87 (2018), 1821-1857.  doi: 10.1090/mcom/3276.  Google Scholar

[5]

G. Acosta and J. P. Borthagaray, A fractional Laplace equation: Regularity of solutions and finite element approximations, SIAM Journal on Numerical Analysis, 55 (2017), 472-495.  doi: 10.1137/15M1033952.  Google Scholar

[6]

R. A. Adams and J. F. Fournier, Sobolev Spaces, 2nd edition, Pure and Applied Mathematics (Amsterdam), 140, Elsevier/Academic Press, Amsterdam, 2003.  Google Scholar

[7]

B. Alali and N. Albin, Fourier multipliers for nonlocal Laplace operators, Applicable Analysis (2019). doi: 10.1080/00036811.2019.1692134.  Google Scholar

[8]

D. Applebaum, Lévy Processes and Stochastic Calculus, 2nd edition, Cambridge Studies in Advanced Mathematics, 116, Cambridge University Press, Cambridge, 2009. doi: 10.1017/CBO9780511809781.  Google Scholar

[9]

A. V. Balakrishnan, Fractional powers of closed operators and the semigroups generated by them, Pacific J. Math., 10 (1960), 419-437.  doi: 10.2140/pjm.1960.10.419.  Google Scholar

[10]

U. BiccariM. Warma and E. Zuazua, Local elliptic regularity for the Dirichlet fractional Laplacian, Adv. Nonlinear Stud., 17 (2017), 387-409.  doi: 10.1515/ans-2017-0014.  Google Scholar

[11]

U. Biccari, M. Warma and E. Zuazua, Local Regularity for Fractional Heat Equations, Recent Advances in PDEs: Analysis, Numerics and Control, SEMA SIMAI Springer Ser., 17, Springer, Cham, 2018,233–249.  Google Scholar

[12] G. M. BisciV. D. Radulescu and R. Servadei, Variational methods for nonlocal fractional problems, Cambridge University Press, 2016.  doi: 10.1017/CBO9781316282397.  Google Scholar
[13]

S. Bochner, Diffusion equation and stochastic processes, Proc. Nat. Acad. Sci. U. S. A., 35 (1949), 368-370.  doi: 10.1073/pnas.35.7.368.  Google Scholar

[14]

K. BogdanK. Burdzy and Z.-Q. Chen, Censored stable processes, Probab. Theory Rel., 127 (2003), 89-152.  doi: 10.1007/s00440-003-0275-1.  Google Scholar

[15]

K. BogdanT. Grzywny and M. Ryznar, Heat kernel estimates for the fractional Laplacian with Dirichlet conditions, The Annals of Probability, 38 (2010), 1901-1923.  doi: 10.1214/10-AOP532.  Google Scholar

[16]

M. BonforteA. Figalli and J. L. Vázquez, Sharp global estimates for local and nonlocal porous medium-type equations in bounded domains, Anal. PDE, 11 (2018), 945-982.  doi: 10.2140/apde.2018.11.945.  Google Scholar

[17]

M. BonforteY. Sire and J. L. Vázquez, Existence, uniqueness and asymptotic behavior for fractional porous medium equations on bounded domains, Discrete Contin. Dyn. Syst., 35 (2015), 5725-5767.  doi: 10.3934/dcds.2015.35.5725.  Google Scholar

[18]

M. Bonforte and J. L. Vázquez, A Priori estimates for fractional nonlinear degenerate diffusion equations on bounded domains, Archive for Rational Mechanics and Analysis, 218 (2015), 317-362.  doi: 10.1007/s00205-015-0861-2.  Google Scholar

[19]

C. Br$\ddot{a}$ndleE. ColoradoA. De Pablo and U. Sánchez, A concave convex elliptic problem involving the fractional Laplacian, Proc. R. Soc. Edinb., 143 (2013), 39-71.  doi: 10.1017/S0308210511000175.  Google Scholar

[20]

B. BarriosE. ColoradoA. de Pablo and U. Sánchez, On some critical problems for the fractional Laplacian operator, Journal of Differential Equations, 252 (2012), 6133-6162.  doi: 10.1016/j.jde.2012.02.023.  Google Scholar

[21]

J. P. Borthagaray and P. Ciarlet, On the convergence in $H^1$-norm for the fractional Laplacian, hal-01912092 (2018). Submitted. doi: 10.1137/18M1221436.  Google Scholar

[22]

C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, Lecture Notes of the Unione Matematica Italiana, 2016. doi: 10.1007/978-3-319-28739-3.  Google Scholar

[23]

X. Cabré and J.-M. Roquejoffre, The influence of fractional diffusion in Fisher-KPP equations, Comm. Math. Physics, 320 (2013), 679-722.  doi: 10.1007/s00220-013-1682-5.  Google Scholar

[24]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians I: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23-53.  doi: 10.1016/j.anihpc.2013.02.001.  Google Scholar

[25]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[26]

L. Caffarelli; P. R. Stinga :, Fractional elliptic equations, Caccioppoli estimates and regularity., Ann. Inst. H. Poincaré Anal. Non Linéaire 33(3) (2014), 767-807. doi: 10.1016/j.anihpc.2015.01.004.  Google Scholar

[27]

X. CaoY.-H. Lin and H. Liu, Simultaneously recovering potentials and embedded obstacles for anisotropic fractional Schrödinger operators, Inverse Problems & Imaging, 13 (2019), 197-210.  doi: 10.3934/ipi.2019011.  Google Scholar

[28]

A. CapellaJ. DávilaL. Dupaigne and Y. Sire, Regularity of radial extremal solutions for some non-local semilinear equations, Commun. Part. Differ. Equ., 36 (2011), 1353-1384.  doi: 10.1080/03605302.2011.562954.  Google Scholar

[29]

W. Chen and S. Holm, Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency, J. Acoust. Soc. Am., 115 (2004), 1424-1430.   Google Scholar

[30]

Z.-Q. ChenP. Kim and R. Song, Two-sided heat kernel estimates for censored stable-like processes, Probab. Theory Rel., 146 (2010), 361-399.  doi: 10.1007/s00440-008-0193-3.  Google Scholar

[31]

Z.-Q. Chen and R. Song, Two-sided eigenvalue estimates for subordinate processes in domains, Journal of Functional Analysis, 226 (2005), 90-113.  doi: 10.1016/j.jfa.2005.05.004.  Google Scholar

[32]

B. Claus and M. Warm, Realization of the fractional Laplacian with nonlocal exterior conditions via forms method, Journal of Evolution Equations, 20 (2020), 1597-16313.  doi: 10.1007/s00028-020-00567-0.  Google Scholar

[33]

N. CusimanoF. Del TesoL. Gerardo-Giorda and G. Pagnini, Discretizations of the spectral fractional Laplacian on general domains with Dirichlet, Neumann, and Robin boundary conditions, SIAM J. Numer. Anal., 56 (2018), 1243-1272.  doi: 10.1137/17M1128010.  Google Scholar

[34]

N. CusimanoF. Del TesoL. Gerardo-Giorda and G. Pagnini, Numerical approximations for fractional elliptic equations via the method of semigroups, ESAIM Math. Model. Numer. Anal., 54 (2020), 751-774.  doi: 10.1051/m2an/2019076.  Google Scholar

[35]

M. Délia and M. Gunzburger, The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator, Comput. Math. Appl., 66 (2013), 1245-1260.  doi: 10.1016/j.camwa.2013.07.022.  Google Scholar

[36]

M. Daoud and E.-H. Laamri, Reaction-diffusion systems with nonlocal fractional diffusion, In preparation. Google Scholar

[37]

A. De PabloF. QuirósA. Rodríguez and J. L. Vázquez, A fractional porous medium equation, Adv. Math., 226 (2011), 1378-1409.  doi: 10.1016/j.aim.2010.07.017.  Google Scholar

[38]

A. De PabloF. QuirósA. Rodríguez and J. L. Vázquez, A general fractional porous medium equation, Equation. Commun. Pure Appl. Math., 65 (2012), 1242-1284.  doi: 10.1002/cpa.21408.  Google Scholar

[39]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[40]

S. DuoH. W. Van Wyk and Y. Zhang, A novel and accurate weighted trapezoidal finite difference method for the fractional Laplacian, Journal of Computational Physics, 355 (2018), 233-252.  doi: 10.1016/j.jcp.2017.11.011.  Google Scholar

[41]

S. DuoL. Ju and Y. Zhang, A fast algorithm for solving the space-time fractional diffusion equation, Comput. Math. Appl., 75 (2017), 1929-1941.  doi: 10.1016/j.camwa.2017.04.008.  Google Scholar

[42]

S. DuoH. Wang and Y. Zhang, A comparative study on nonlocal diffusion operators related to the fractional Laplacian, Discrete and Continuous Dynamical Systems B, 24 (2019), 231-256.  doi: 10.3934/dcdsb.2018110.  Google Scholar

[43]

S. Duo and Y. Zhang, Accurate numerical methods for two and three dimensional integral fractional Laplacian with applications, Computer Methods in Applied Mechanics and Engineering, 355 (2019), 639-662.  doi: 10.1016/j.cma.2019.06.016.  Google Scholar

[44]

B. Dyda, Fractional calculus for power functions and eigenvalues of the fractional Laplacian, Fract. Calc. Appl. Anal., 15 (2012), 536-555.  doi: 10.2478/s13540-012-0038-8.  Google Scholar

[45]

B. DydaA. Kuznetsov and M. Kwaśnicki, Eigenvalues of the fractional Laplace operator in the unit ball, J. Lond. Math. Soc., 95 (2017), 500-518.  doi: 10.1112/jlms.12024.  Google Scholar

[46]

B. DydaA. Kuznetsov and M. Kwaśnicki, Fractional Laplace operator and Meijer G-function, Constructive Approximation, 45 (2017), 427-448.  doi: 10.1007/s00365-016-9336-4.  Google Scholar

[47]

M. M. Fall, Regional fractional Laplacians: Boundary regularity, preprint, arXiv: 2007.04808. Google Scholar

[48]

M. M. Fall and T. Weth, Nonexistence results for a class of fractional elliptic boundary value problems, Journal of Functional Analysis, 263 (2012), 2205-2227.  doi: 10.5186/aasfm.2015.4009.  Google Scholar

[49]

A. FiscellaR. Servadei and E. Valdinoci, Density properties for fractional Sobolev spaces, Annales Academiae Scientiarum Fennicae. Mathematica, 40 (2015), 235-253.   Google Scholar

[50]

R. L. Frank and L. Geisinger, Refined semiclassical asymptotic for fractional powers of the Laplace operator, J. Reine Angew. Math.(Crelles Journal), (2014). doi: 10.1515/crelle-2013-0120.  Google Scholar

[51]

P. Garbaczewski, Fractional Laplacians and Levy flights in bounded domains, Acta Physica Polonica Series B, 49 (2018), 921-942.  doi: 10.5506/APhysPolB.49.921.  Google Scholar

[52]

P. Garbaczewski and V. Stephanovich, Fractional Laplacians in bounded domains: Killed, reflected, censored and taboo Lévy flights, Phys. Rev., E99 (2019), 042126. doi: 10.5506/APhysPolB.49.921.  Google Scholar

[53]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, 24, Pitman (Advanced Publishing Program), Boston, MA, 1985.  Google Scholar

[54]

Q.-Y. Guan and Z.-M. Ma, Boundary problems for fractional Laplacians, Stochastics and Dynamics, 5 (2005), 385-424.  doi: 10.1142/S021949370500150X.  Google Scholar

[55]

Q. Guan and M. Gunzburger, Analysis and approximation of a nonlocal obstacle problem, Comput. Appl. Math., 313 (2017), 102-118.  doi: 10.1016/j.cam.2016.09.012.  Google Scholar

[56]

A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators, Frontiers in Mathematics, Birkh$\ddot{a}$user Verlag, Basel, Switzerland, 2006.  Google Scholar

[57]

T. Kato, Fractional powers of dissipative operators, J. Math. Soc. Japan, 13 (1961), 246-274.  doi: 10.2969/jmsj/01330246.  Google Scholar

[58]

H. Komatsu, Fractional powers of operators, Pacific J. Math., 19 (1966), 285-346.  doi: 10.2140/pjm.1966.19.285.  Google Scholar

[59]

M. Kwaśnicki, Ten equivalent definitions of the fractional Laplace operator, Fract. Calc. Appl. Anal., 20 (2015), 7-51.   Google Scholar

[60]

J.-L. Lions and E. Magenes, Non-homogeneous Problems and Applications, 1, Translated from the French by P. Kenneth, Band 181, Springer-Verlag, New York-Heidelberg, 1972.  Google Scholar

[61]

T. LeonoriI. PeralA. Primo and F. Soria, Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations, Discrete Contin. Dyn. Syst., 35 (2015), 6031-6068.  doi: 10.3934/dcds.2015.35.6031.  Google Scholar

[62]

A. Lischke, et al., What is the fractional Laplacian?, Journal of computational Physics, 404 (2020) 109009. Google Scholar

[63]

R. Musina and A. I. Nazarov, On fractional Laplacians, Communications in Partial Differential Equations, 39 (2014), 1780-1790.  doi: 10.1080/03605302.2013.864304.  Google Scholar

[64]

R. Musina and A. I. Nazarov, On fractional Laplacians - 2, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1667-1673.  doi: 10.1016/j.anihpc.2015.08.001.  Google Scholar

[65]

R. Musina and A. I. Nazarov, On fractional Laplacians - 3, ESAIM: Control, Optimisation and Calculus of Variations, 22 (2016), 832-841.  doi: 10.1051/cocv/2015032.  Google Scholar

[66]

R. H. NochettoE. Otárola and A. J. Salgado, A PDE approach to space-time fractional parabolic problems, SIAM J. Numer. Anal., 54 (2016), 848-873.  doi: 10.1137/14096308X.  Google Scholar

[67]

R. H. NochettoE. Otárola and A. J. Salgado, A PDE approach to fractional diffusion in general domains: A priori error analysis, Found. Comput. Math., 15 (2014), 733-791.  doi: 10.1007/s10208-014-9208-x.  Google Scholar

[68]

C. Pozrikidis, The Fractional Laplacian, University of Massachusetts Amherst, USA, Taylor & Francis Group, LLC, 2016. doi: 10.1201/b19666.  Google Scholar

[69]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures Appl., 101 (2014), 275-302.  doi: 10.1016/j.matpur.2013.06.003.  Google Scholar

[70]

M. P. Saborid, The Coordinate-Free Approach to Spherical Harmonics, preprint, arXiv: 0806.3367. Google Scholar

[71]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science Publishers, Yverdon, 1993.  Google Scholar

[72] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge Stud. Adv. Math., 68, Cambridge University Press, Cambridge, 1999.   Google Scholar
[73]

R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators, Proceedings of the Royal Society of Edinburgh, 144A (2014), 831-855.  doi: 10.1017/S0308210512001783.  Google Scholar

[74]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137.  doi: 10.3934/dcds.2013.33.2105.  Google Scholar

[75]

S. A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces, Mech. Phys. Solids, 48 (2000), 175-209.  doi: 10.1016/S0022-5096(99)00029-0.  Google Scholar

[76]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Ph.D thesis, The University of Texas at Austin, 2005.  Google Scholar

[77]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112.  doi: 10.1002/cpa.20153.  Google Scholar

[78]

R. Song and Z. Vondraček, Potential theory of subordinate killed Brownian motion in a domain, Probab. Theory Relat. Fields, 125 (2003), 578-592.  doi: 10.1007/s00440-002-0251-1.  Google Scholar

[79]

R. Song and Z. Vondraček, On the relationship between subordinate killed and killed subordinate processes, Electron. Commun. Probab., 13 (2008), 325-336.  doi: 10.1214/ECP.v13-1388.  Google Scholar

[80]

P. R. Stinga, User's Guide to the Fractional Laplacian and the Method of Semigroups, Handbook of Fractional Calculus with Applications, 2, 2019.  Google Scholar

[81]

P. R. Stinga, Fractional powers of second order partial differential operators: Extension problem and regularity theory, Ph.D thesis, Universidad Autònoma de Madrid, 2010. Google Scholar

[82]

P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators, Commun. Part. Differ. Equ., 35 (2010), 2092-2122.  doi: 10.1080/03605301003735680.  Google Scholar

[83]

J. Tan, Positive solutions for non local elliptic problems, Discrete Contin. Dyn. Syst., 33 (2013), 837-859.  doi: 10.3934/dcds.2013.33.837.  Google Scholar

[84]

S. TerraciniG. Tortone and S. Vita, On s-harmonic functions on cones, Analysis & PDE, 11 (2018), 1653-1691.  doi: 10.2140/apde.2018.11.1653.  Google Scholar

[85]

S. TerraciniG. Verzini and A. Zilio, Uniform H$\ddot{o}$lder regularity with small exponent in competition-fractional diffusion systems, Discret. Contin. Dyn. Syst., 34 (2014), 2669-2691.  doi: 10.3934/dcds.2014.34.2669.  Google Scholar

[86]

E. Valdinoci, From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl., 49 (2009), 33-44.   Google Scholar

[87]

J. L. Vázquez, The Mathematical Theories of Diffusion. Nonlinear and Fractional Diffusion, Springer Lecture Notes in Mathematics, CIME Subseries, 2017.  Google Scholar

[88]

S. Y. Yolcu and T. Yolcu, Refined eigenvalue bounds on the Dirichlet fractional Laplacian, J. of Math. Phys., 56 (2015), 073506. doi: 10.1063/1.4922761.  Google Scholar

[89]

K. Yosida, Functional Analysis, Classics in Mathematics, Springer-Verlag, Berlin Heidelberg, 1995. doi: 10.1007/978-3-642-61859-8.  Google Scholar

show all references

References:
[1]

N. Abatangelo, Large solutions for fractional Laplacian Operators, Ph.D thesis, 2015. Google Scholar

[2]

N. Abatangelo and L. Dupaigne, Nonhomogeneous boundary conditions for the spectral fractional Laplacian, Ann. Inst. H. Poincaré Anal. Non Linéaire 34 (2), (2017), 439–467. doi: 10.1016/j.anihpc.2016.02.001.  Google Scholar

[3]

B. Abdellaoui, K. Biroud and E.-H. Laamri, Existence et nonexistence of positive solutions to a fractional parabolic problem with singular weight at the boundary, To appear in Journal of Evolution Equations. Google Scholar

[4]

G. AcostaJ. P. BorthagarayO. Bruno and M. Maas, Regularity theory and high order numerical methods for the (1d)-fractional Laplacian, Mathematics of Computation, 87 (2018), 1821-1857.  doi: 10.1090/mcom/3276.  Google Scholar

[5]

G. Acosta and J. P. Borthagaray, A fractional Laplace equation: Regularity of solutions and finite element approximations, SIAM Journal on Numerical Analysis, 55 (2017), 472-495.  doi: 10.1137/15M1033952.  Google Scholar

[6]

R. A. Adams and J. F. Fournier, Sobolev Spaces, 2nd edition, Pure and Applied Mathematics (Amsterdam), 140, Elsevier/Academic Press, Amsterdam, 2003.  Google Scholar

[7]

B. Alali and N. Albin, Fourier multipliers for nonlocal Laplace operators, Applicable Analysis (2019). doi: 10.1080/00036811.2019.1692134.  Google Scholar

[8]

D. Applebaum, Lévy Processes and Stochastic Calculus, 2nd edition, Cambridge Studies in Advanced Mathematics, 116, Cambridge University Press, Cambridge, 2009. doi: 10.1017/CBO9780511809781.  Google Scholar

[9]

A. V. Balakrishnan, Fractional powers of closed operators and the semigroups generated by them, Pacific J. Math., 10 (1960), 419-437.  doi: 10.2140/pjm.1960.10.419.  Google Scholar

[10]

U. BiccariM. Warma and E. Zuazua, Local elliptic regularity for the Dirichlet fractional Laplacian, Adv. Nonlinear Stud., 17 (2017), 387-409.  doi: 10.1515/ans-2017-0014.  Google Scholar

[11]

U. Biccari, M. Warma and E. Zuazua, Local Regularity for Fractional Heat Equations, Recent Advances in PDEs: Analysis, Numerics and Control, SEMA SIMAI Springer Ser., 17, Springer, Cham, 2018,233–249.  Google Scholar

[12] G. M. BisciV. D. Radulescu and R. Servadei, Variational methods for nonlocal fractional problems, Cambridge University Press, 2016.  doi: 10.1017/CBO9781316282397.  Google Scholar
[13]

S. Bochner, Diffusion equation and stochastic processes, Proc. Nat. Acad. Sci. U. S. A., 35 (1949), 368-370.  doi: 10.1073/pnas.35.7.368.  Google Scholar

[14]

K. BogdanK. Burdzy and Z.-Q. Chen, Censored stable processes, Probab. Theory Rel., 127 (2003), 89-152.  doi: 10.1007/s00440-003-0275-1.  Google Scholar

[15]

K. BogdanT. Grzywny and M. Ryznar, Heat kernel estimates for the fractional Laplacian with Dirichlet conditions, The Annals of Probability, 38 (2010), 1901-1923.  doi: 10.1214/10-AOP532.  Google Scholar

[16]

M. BonforteA. Figalli and J. L. Vázquez, Sharp global estimates for local and nonlocal porous medium-type equations in bounded domains, Anal. PDE, 11 (2018), 945-982.  doi: 10.2140/apde.2018.11.945.  Google Scholar

[17]

M. BonforteY. Sire and J. L. Vázquez, Existence, uniqueness and asymptotic behavior for fractional porous medium equations on bounded domains, Discrete Contin. Dyn. Syst., 35 (2015), 5725-5767.  doi: 10.3934/dcds.2015.35.5725.  Google Scholar

[18]

M. Bonforte and J. L. Vázquez, A Priori estimates for fractional nonlinear degenerate diffusion equations on bounded domains, Archive for Rational Mechanics and Analysis, 218 (2015), 317-362.  doi: 10.1007/s00205-015-0861-2.  Google Scholar

[19]

C. Br$\ddot{a}$ndleE. ColoradoA. De Pablo and U. Sánchez, A concave convex elliptic problem involving the fractional Laplacian, Proc. R. Soc. Edinb., 143 (2013), 39-71.  doi: 10.1017/S0308210511000175.  Google Scholar

[20]

B. BarriosE. ColoradoA. de Pablo and U. Sánchez, On some critical problems for the fractional Laplacian operator, Journal of Differential Equations, 252 (2012), 6133-6162.  doi: 10.1016/j.jde.2012.02.023.  Google Scholar

[21]

J. P. Borthagaray and P. Ciarlet, On the convergence in $H^1$-norm for the fractional Laplacian, hal-01912092 (2018). Submitted. doi: 10.1137/18M1221436.  Google Scholar

[22]

C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, Lecture Notes of the Unione Matematica Italiana, 2016. doi: 10.1007/978-3-319-28739-3.  Google Scholar

[23]

X. Cabré and J.-M. Roquejoffre, The influence of fractional diffusion in Fisher-KPP equations, Comm. Math. Physics, 320 (2013), 679-722.  doi: 10.1007/s00220-013-1682-5.  Google Scholar

[24]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians I: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23-53.  doi: 10.1016/j.anihpc.2013.02.001.  Google Scholar

[25]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[26]

L. Caffarelli; P. R. Stinga :, Fractional elliptic equations, Caccioppoli estimates and regularity., Ann. Inst. H. Poincaré Anal. Non Linéaire 33(3) (2014), 767-807. doi: 10.1016/j.anihpc.2015.01.004.  Google Scholar

[27]

X. CaoY.-H. Lin and H. Liu, Simultaneously recovering potentials and embedded obstacles for anisotropic fractional Schrödinger operators, Inverse Problems & Imaging, 13 (2019), 197-210.  doi: 10.3934/ipi.2019011.  Google Scholar

[28]

A. CapellaJ. DávilaL. Dupaigne and Y. Sire, Regularity of radial extremal solutions for some non-local semilinear equations, Commun. Part. Differ. Equ., 36 (2011), 1353-1384.  doi: 10.1080/03605302.2011.562954.  Google Scholar

[29]

W. Chen and S. Holm, Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency, J. Acoust. Soc. Am., 115 (2004), 1424-1430.   Google Scholar

[30]

Z.-Q. ChenP. Kim and R. Song, Two-sided heat kernel estimates for censored stable-like processes, Probab. Theory Rel., 146 (2010), 361-399.  doi: 10.1007/s00440-008-0193-3.  Google Scholar

[31]

Z.-Q. Chen and R. Song, Two-sided eigenvalue estimates for subordinate processes in domains, Journal of Functional Analysis, 226 (2005), 90-113.  doi: 10.1016/j.jfa.2005.05.004.  Google Scholar

[32]

B. Claus and M. Warm, Realization of the fractional Laplacian with nonlocal exterior conditions via forms method, Journal of Evolution Equations, 20 (2020), 1597-16313.  doi: 10.1007/s00028-020-00567-0.  Google Scholar

[33]

N. CusimanoF. Del TesoL. Gerardo-Giorda and G. Pagnini, Discretizations of the spectral fractional Laplacian on general domains with Dirichlet, Neumann, and Robin boundary conditions, SIAM J. Numer. Anal., 56 (2018), 1243-1272.  doi: 10.1137/17M1128010.  Google Scholar

[34]

N. CusimanoF. Del TesoL. Gerardo-Giorda and G. Pagnini, Numerical approximations for fractional elliptic equations via the method of semigroups, ESAIM Math. Model. Numer. Anal., 54 (2020), 751-774.  doi: 10.1051/m2an/2019076.  Google Scholar

[35]

M. Délia and M. Gunzburger, The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator, Comput. Math. Appl., 66 (2013), 1245-1260.  doi: 10.1016/j.camwa.2013.07.022.  Google Scholar

[36]

M. Daoud and E.-H. Laamri, Reaction-diffusion systems with nonlocal fractional diffusion, In preparation. Google Scholar

[37]

A. De PabloF. QuirósA. Rodríguez and J. L. Vázquez, A fractional porous medium equation, Adv. Math., 226 (2011), 1378-1409.  doi: 10.1016/j.aim.2010.07.017.  Google Scholar

[38]

A. De PabloF. QuirósA. Rodríguez and J. L. Vázquez, A general fractional porous medium equation, Equation. Commun. Pure Appl. Math., 65 (2012), 1242-1284.  doi: 10.1002/cpa.21408.  Google Scholar

[39]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[40]

S. DuoH. W. Van Wyk and Y. Zhang, A novel and accurate weighted trapezoidal finite difference method for the fractional Laplacian, Journal of Computational Physics, 355 (2018), 233-252.  doi: 10.1016/j.jcp.2017.11.011.  Google Scholar

[41]

S. DuoL. Ju and Y. Zhang, A fast algorithm for solving the space-time fractional diffusion equation, Comput. Math. Appl., 75 (2017), 1929-1941.  doi: 10.1016/j.camwa.2017.04.008.  Google Scholar

[42]

S. DuoH. Wang and Y. Zhang, A comparative study on nonlocal diffusion operators related to the fractional Laplacian, Discrete and Continuous Dynamical Systems B, 24 (2019), 231-256.  doi: 10.3934/dcdsb.2018110.  Google Scholar

[43]

S. Duo and Y. Zhang, Accurate numerical methods for two and three dimensional integral fractional Laplacian with applications, Computer Methods in Applied Mechanics and Engineering, 355 (2019), 639-662.  doi: 10.1016/j.cma.2019.06.016.  Google Scholar

[44]

B. Dyda, Fractional calculus for power functions and eigenvalues of the fractional Laplacian, Fract. Calc. Appl. Anal., 15 (2012), 536-555.  doi: 10.2478/s13540-012-0038-8.  Google Scholar

[45]

B. DydaA. Kuznetsov and M. Kwaśnicki, Eigenvalues of the fractional Laplace operator in the unit ball, J. Lond. Math. Soc., 95 (2017), 500-518.  doi: 10.1112/jlms.12024.  Google Scholar

[46]

B. DydaA. Kuznetsov and M. Kwaśnicki, Fractional Laplace operator and Meijer G-function, Constructive Approximation, 45 (2017), 427-448.  doi: 10.1007/s00365-016-9336-4.  Google Scholar

[47]

M. M. Fall, Regional fractional Laplacians: Boundary regularity, preprint, arXiv: 2007.04808. Google Scholar

[48]

M. M. Fall and T. Weth, Nonexistence results for a class of fractional elliptic boundary value problems, Journal of Functional Analysis, 263 (2012), 2205-2227.  doi: 10.5186/aasfm.2015.4009.  Google Scholar

[49]

A. FiscellaR. Servadei and E. Valdinoci, Density properties for fractional Sobolev spaces, Annales Academiae Scientiarum Fennicae. Mathematica, 40 (2015), 235-253.   Google Scholar

[50]

R. L. Frank and L. Geisinger, Refined semiclassical asymptotic for fractional powers of the Laplace operator, J. Reine Angew. Math.(Crelles Journal), (2014). doi: 10.1515/crelle-2013-0120.  Google Scholar

[51]

P. Garbaczewski, Fractional Laplacians and Levy flights in bounded domains, Acta Physica Polonica Series B, 49 (2018), 921-942.  doi: 10.5506/APhysPolB.49.921.  Google Scholar

[52]

P. Garbaczewski and V. Stephanovich, Fractional Laplacians in bounded domains: Killed, reflected, censored and taboo Lévy flights, Phys. Rev., E99 (2019), 042126. doi: 10.5506/APhysPolB.49.921.  Google Scholar

[53]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, 24, Pitman (Advanced Publishing Program), Boston, MA, 1985.  Google Scholar

[54]

Q.-Y. Guan and Z.-M. Ma, Boundary problems for fractional Laplacians, Stochastics and Dynamics, 5 (2005), 385-424.  doi: 10.1142/S021949370500150X.  Google Scholar

[55]

Q. Guan and M. Gunzburger, Analysis and approximation of a nonlocal obstacle problem, Comput. Appl. Math., 313 (2017), 102-118.  doi: 10.1016/j.cam.2016.09.012.  Google Scholar

[56]

A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators, Frontiers in Mathematics, Birkh$\ddot{a}$user Verlag, Basel, Switzerland, 2006.  Google Scholar

[57]

T. Kato, Fractional powers of dissipative operators, J. Math. Soc. Japan, 13 (1961), 246-274.  doi: 10.2969/jmsj/01330246.  Google Scholar

[58]

H. Komatsu, Fractional powers of operators, Pacific J. Math., 19 (1966), 285-346.  doi: 10.2140/pjm.1966.19.285.  Google Scholar

[59]

M. Kwaśnicki, Ten equivalent definitions of the fractional Laplace operator, Fract. Calc. Appl. Anal., 20 (2015), 7-51.   Google Scholar

[60]

J.-L. Lions and E. Magenes, Non-homogeneous Problems and Applications, 1, Translated from the French by P. Kenneth, Band 181, Springer-Verlag, New York-Heidelberg, 1972.  Google Scholar

[61]

T. LeonoriI. PeralA. Primo and F. Soria, Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations, Discrete Contin. Dyn. Syst., 35 (2015), 6031-6068.  doi: 10.3934/dcds.2015.35.6031.  Google Scholar

[62]

A. Lischke, et al., What is the fractional Laplacian?, Journal of computational Physics, 404 (2020) 109009. Google Scholar

[63]

R. Musina and A. I. Nazarov, On fractional Laplacians, Communications in Partial Differential Equations, 39 (2014), 1780-1790.  doi: 10.1080/03605302.2013.864304.  Google Scholar

[64]

R. Musina and A. I. Nazarov, On fractional Laplacians - 2, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1667-1673.  doi: 10.1016/j.anihpc.2015.08.001.  Google Scholar

[65]

R. Musina and A. I. Nazarov, On fractional Laplacians - 3, ESAIM: Control, Optimisation and Calculus of Variations, 22 (2016), 832-841.  doi: 10.1051/cocv/2015032.  Google Scholar

[66]

R. H. NochettoE. Otárola and A. J. Salgado, A PDE approach to space-time fractional parabolic problems, SIAM J. Numer. Anal., 54 (2016), 848-873.  doi: 10.1137/14096308X.  Google Scholar

[67]

R. H. NochettoE. Otárola and A. J. Salgado, A PDE approach to fractional diffusion in general domains: A priori error analysis, Found. Comput. Math., 15 (2014), 733-791.  doi: 10.1007/s10208-014-9208-x.  Google Scholar

[68]

C. Pozrikidis, The Fractional Laplacian, University of Massachusetts Amherst, USA, Taylor & Francis Group, LLC, 2016. doi: 10.1201/b19666.  Google Scholar

[69]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures Appl., 101 (2014), 275-302.  doi: 10.1016/j.matpur.2013.06.003.  Google Scholar

[70]

M. P. Saborid, The Coordinate-Free Approach to Spherical Harmonics, preprint, arXiv: 0806.3367. Google Scholar

[71]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science Publishers, Yverdon, 1993.  Google Scholar

[72] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge Stud. Adv. Math., 68, Cambridge University Press, Cambridge, 1999.   Google Scholar
[73]

R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators, Proceedings of the Royal Society of Edinburgh, 144A (2014), 831-855.  doi: 10.1017/S0308210512001783.  Google Scholar

[74]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137.  doi: 10.3934/dcds.2013.33.2105.  Google Scholar

[75]

S. A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces, Mech. Phys. Solids, 48 (2000), 175-209.  doi: 10.1016/S0022-5096(99)00029-0.  Google Scholar

[76]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Ph.D thesis, The University of Texas at Austin, 2005.  Google Scholar

[77]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112.  doi: 10.1002/cpa.20153.  Google Scholar

[78]

R. Song and Z. Vondraček, Potential theory of subordinate killed Brownian motion in a domain, Probab. Theory Relat. Fields, 125 (2003), 578-592.  doi: 10.1007/s00440-002-0251-1.  Google Scholar

[79]

R. Song and Z. Vondraček, On the relationship between subordinate killed and killed subordinate processes, Electron. Commun. Probab., 13 (2008), 325-336.  doi: 10.1214/ECP.v13-1388.  Google Scholar

[80]

P. R. Stinga, User's Guide to the Fractional Laplacian and the Method of Semigroups, Handbook of Fractional Calculus with Applications, 2, 2019.  Google Scholar

[81]

P. R. Stinga, Fractional powers of second order partial differential operators: Extension problem and regularity theory, Ph.D thesis, Universidad Autònoma de Madrid, 2010. Google Scholar

[82]

P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators, Commun. Part. Differ. Equ., 35 (2010), 2092-2122.  doi: 10.1080/03605301003735680.  Google Scholar

[83]

J. Tan, Positive solutions for non local elliptic problems, Discrete Contin. Dyn. Syst., 33 (2013), 837-859.  doi: 10.3934/dcds.2013.33.837.  Google Scholar

[84]

S. TerraciniG. Tortone and S. Vita, On s-harmonic functions on cones, Analysis & PDE, 11 (2018), 1653-1691.  doi: 10.2140/apde.2018.11.1653.  Google Scholar

[85]

S. TerraciniG. Verzini and A. Zilio, Uniform H$\ddot{o}$lder regularity with small exponent in competition-fractional diffusion systems, Discret. Contin. Dyn. Syst., 34 (2014), 2669-2691.  doi: 10.3934/dcds.2014.34.2669.  Google Scholar

[86]

E. Valdinoci, From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl., 49 (2009), 33-44.   Google Scholar

[87]

J. L. Vázquez, The Mathematical Theories of Diffusion. Nonlinear and Fractional Diffusion, Springer Lecture Notes in Mathematics, CIME Subseries, 2017.  Google Scholar

[88]

S. Y. Yolcu and T. Yolcu, Refined eigenvalue bounds on the Dirichlet fractional Laplacian, J. of Math. Phys., 56 (2015), 073506. doi: 10.1063/1.4922761.  Google Scholar

[89]

K. Yosida, Functional Analysis, Classics in Mathematics, Springer-Verlag, Berlin Heidelberg, 1995. doi: 10.1007/978-3-642-61859-8.  Google Scholar

Figure 1.  Comparison of the functions $ (-\Delta)^su $ where $ u $ is defined in (4.11) and $ (-\Delta)^s $ represents $ (-\Delta)_{Spec}^{s} $ (——), $ (-\Delta)_{Reg}^{s} $ (- - - -), $ (-\Delta)_{Rest}^{s} $ (- $ \cdot $ - $ \cdot $) or $ (-\Delta)_{Pery}^{s} $ ($ \cdot $$ \cdot $$ \cdot $$ \cdot $$ \cdot $$ \cdot $) with $ \delta = 4 $. The result for $ -\Delta $ ($ \ast $ $ \ast $ $ \ast $ $ \ast $) is included in the plot of $ s = 0.975 $
Figure 2.  Comparison of the functions $ (-\Delta)^su $ where $ u $ is defined in (4.12) and $ (-\Delta)^s $ represents $ (-\Delta)_{Spec}^{s} $ (——), $ (-\Delta)_{Reg}^{s} $ (- - - -), $ (-\Delta)_{Rest}^{s} $ (- $ \cdot $ - $ \cdot $) or $ (-\Delta)_{Pery}^{s} $ ($ \cdot $$ \cdot $$ \cdot $$ \cdot $$ \cdot $$ \cdot $) with $ \delta = 4 $. The result for $ -\Delta $ ($ \ast $ $ \ast $ $ \ast $ $ \ast $) is included in the plot of $ s = 0.975 $
Figure 3.  Comparison of the solution to (4.13) with $ (-\Delta)_{Spec}^{s} $ (——), $ (-\Delta)_{Reg}^{s} $ (- - - -), $ (-\Delta)_{Rest}^{s} $ (- $ \cdot $ - $ \cdot $) or $ (-\Delta)_{Pery}^{s} $ ($ \cdot $$ \cdot $$ \cdot $$ \cdot $$ \cdot $$ \cdot $) with $ \delta = 4 $. The result for $ -\Delta $ ($ \ast $ $ \ast $ $ \ast $ $ \ast $) is included in the plot of $ s = 0.975 $
Table 1.  The regional fractional Laplacian of some functions that vanish in $ \mathbb{R}\setminus (-1,1) $
$ u(x) $ $ (-\Delta)_{Reg}^su(x) $
$ (1-x^2)_+^{s-1} $ 0
$ (1-x^2)_+^s $ $ \Gamma(2s+1) $
$ (1-x^2)_+^{s+1} $ $ (s+1)\Gamma(2s+1)(1-(2s+1)x^2) $
$ (1-x^2)_+^{s+2} $ $ \frac{(s+1)(s+2)}{2}\Gamma(2s+1)(1-(4s+2)x^2+(\frac{2s}{3}+1)(2s+1)x^4) $
$ x(1-x^2)_+^{s-1} $ 0
$ x(1-x^2)_+^s $ $ \Gamma(2s+2)x $
$ x(1-x^2)_+^{s+1} $ $ \frac{\Gamma(2s+3)}{6}(3-(2s+3)x^2)x $
$ x(1-x^2)_+^{s+2} $ $ \frac{s+2}{60}\Gamma(2s+3)(15-(20s+30)x^2+(2s+3)(2s+5)x^4)x $
$ u(x) $ $ (-\Delta)_{Reg}^su(x) $
$ (1-x^2)_+^{s-1} $ 0
$ (1-x^2)_+^s $ $ \Gamma(2s+1) $
$ (1-x^2)_+^{s+1} $ $ (s+1)\Gamma(2s+1)(1-(2s+1)x^2) $
$ (1-x^2)_+^{s+2} $ $ \frac{(s+1)(s+2)}{2}\Gamma(2s+1)(1-(4s+2)x^2+(\frac{2s}{3}+1)(2s+1)x^4) $
$ x(1-x^2)_+^{s-1} $ 0
$ x(1-x^2)_+^s $ $ \Gamma(2s+2)x $
$ x(1-x^2)_+^{s+1} $ $ \frac{\Gamma(2s+3)}{6}(3-(2s+3)x^2)x $
$ x(1-x^2)_+^{s+2} $ $ \frac{s+2}{60}\Gamma(2s+3)(15-(20s+30)x^2+(2s+3)(2s+5)x^4)x $
Table 2.  The regional fractional Laplacian of some functions that vanish in $ \mathbb{R}^N\setminus B(0,1) $
$ u(\mathbf{x}) $ $ (-\Delta)_{Reg}^su(\mathbf{x}) $
$ (1-\|\mathbf{x}\|^2)_+^s $ $ 4^s\Gamma(s+1)\Gamma(\frac{2s+N}{2})\Gamma(\frac{N}{2} )^{-1} $
$ (1-\|\mathbf{x}\|^2)_+^{s+1} $ $ 4^s\Gamma(s+2)\Gamma(\frac{2s+N}{2}) \Gamma(\frac{N}{2} )^{-1}(1-(1+\frac{2s}{N})\|\mathbf{x}\|^2) $
$ (1-\|\mathbf{x}\|^2)_+^{s}x_N $ $ 4^s\Gamma(s+1)\Gamma(\frac{2s+N}{2}+1)\Gamma(\frac{N}{2}+1 )^{-1}x_N $
$ (1-\|\mathbf{x}\|^2)_+^{s+1}x_N $ $ 4^s\Gamma(s+2)\Gamma(\frac{2s+N}{2}+1)\Gamma(\frac{N}{2}+1 )^{-1}(1-(1+\frac{2s}{N+2})\|\mathbf{x}\|^2) $
$ u(\mathbf{x}) $ $ (-\Delta)_{Reg}^su(\mathbf{x}) $
$ (1-\|\mathbf{x}\|^2)_+^s $ $ 4^s\Gamma(s+1)\Gamma(\frac{2s+N}{2})\Gamma(\frac{N}{2} )^{-1} $
$ (1-\|\mathbf{x}\|^2)_+^{s+1} $ $ 4^s\Gamma(s+2)\Gamma(\frac{2s+N}{2}) \Gamma(\frac{N}{2} )^{-1}(1-(1+\frac{2s}{N})\|\mathbf{x}\|^2) $
$ (1-\|\mathbf{x}\|^2)_+^{s}x_N $ $ 4^s\Gamma(s+1)\Gamma(\frac{2s+N}{2}+1)\Gamma(\frac{N}{2}+1 )^{-1}x_N $
$ (1-\|\mathbf{x}\|^2)_+^{s+1}x_N $ $ 4^s\Gamma(s+2)\Gamma(\frac{2s+N}{2}+1)\Gamma(\frac{N}{2}+1 )^{-1}(1-(1+\frac{2s}{N+2})\|\mathbf{x}\|^2) $
[1]

Siwei Duo, Hong Wang, Yanzhi Zhang. A comparative study on nonlocal diffusion operators related to the fractional Laplacian. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 231-256. doi: 10.3934/dcdsb.2018110

[2]

Yutong Chen, Jiabao Su. Resonant problems for fractional Laplacian. Communications on Pure & Applied Analysis, 2017, 16 (1) : 163-188. doi: 10.3934/cpaa.2017008

[3]

Lizhi Zhang. Symmetry of solutions to semilinear equations involving the fractional laplacian. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2393-2409. doi: 10.3934/cpaa.2015.14.2393

[4]

Zhigang Wu, Hao Xu. Symmetry properties in systems of fractional Laplacian equations. Discrete & Continuous Dynamical Systems, 2019, 39 (3) : 1559-1571. doi: 10.3934/dcds.2019068

[5]

Maoding Zhen, Jinchun He, Haoyun Xu. Critical system involving fractional Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (1) : 237-253. doi: 10.3934/cpaa.2019013

[6]

Mikko Kemppainen, Peter Sjögren, José Luis Torrea. Wave extension problem for the fractional Laplacian. Discrete & Continuous Dynamical Systems, 2015, 35 (10) : 4905-4929. doi: 10.3934/dcds.2015.35.4905

[7]

Juan-Luis Vázquez. Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 857-885. doi: 10.3934/dcdss.2014.7.857

[8]

Patrizia Pucci, Mingqi Xiang, Binlin Zhang. A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 4035-4051. doi: 10.3934/dcds.2017171

[9]

Meixia Dou. A direct method of moving planes for fractional Laplacian equations in the unit ball. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1797-1807. doi: 10.3934/cpaa.2016015

[10]

Tomás Sanz-Perela. Regularity of radial stable solutions to semilinear elliptic equations for the fractional Laplacian. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2547-2575. doi: 10.3934/cpaa.2018121

[11]

Rongrong Yang, Zhongxue Lü. The properties of positive solutions to semilinear equations involving the fractional Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1073-1089. doi: 10.3934/cpaa.2019052

[12]

Leyun Wu, Pengcheng Niu. Symmetry and nonexistence of positive solutions to fractional p-Laplacian equations. Discrete & Continuous Dynamical Systems, 2019, 39 (3) : 1573-1583. doi: 10.3934/dcds.2019069

[13]

Vladimir Georgiev, Koichi Taniguchi. On fractional Leibniz rule for Dirichlet Laplacian in exterior domain. Discrete & Continuous Dynamical Systems, 2019, 39 (2) : 1101-1115. doi: 10.3934/dcds.2019046

[14]

De Tang, Yanqin Fang. Regularity and nonexistence of solutions for a system involving the fractional Laplacian. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2431-2451. doi: 10.3934/cpaa.2015.14.2431

[15]

Xinjing Wang. Liouville type theorem for Fractional Laplacian system. Communications on Pure & Applied Analysis, 2020, 19 (11) : 5253-5268. doi: 10.3934/cpaa.2020236

[16]

Selma Yildirim Yolcu, Türkay Yolcu. Sharper estimates on the eigenvalues of Dirichlet fractional Laplacian. Discrete & Continuous Dynamical Systems, 2015, 35 (5) : 2209-2225. doi: 10.3934/dcds.2015.35.2209

[17]

Tingzhi Cheng. Monotonicity and symmetry of solutions to fractional Laplacian equation. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 3587-3599. doi: 10.3934/dcds.2017154

[18]

Lorenzo Brasco, Enea Parini, Marco Squassina. Stability of variational eigenvalues for the fractional $p-$Laplacian. Discrete & Continuous Dynamical Systems, 2016, 36 (4) : 1813-1845. doi: 10.3934/dcds.2016.36.1813

[19]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[20]

Hua Chen, Hong-Ge Chen. Estimates the upper bounds of Dirichlet eigenvalues for fractional Laplacian. Discrete & Continuous Dynamical Systems, 2022, 42 (1) : 301-317. doi: 10.3934/dcds.2021117

2020 Impact Factor: 2.425

Article outline

Figures and Tables

[Back to Top]