We establish some results regarding the existence of solutions to a nonlinear mono-energetic singular transport equation in slab geometry on $ L^p $-spaces with $ p\in (1,+\infty) $. Both the cases where the boundary conditions are specular reflections and periodic are discussed.
Citation: |
[1] |
J. Appell, The superposition operator in function spaces – A survey, Exposition Math., 6 (1988), 209-270.
![]() ![]() |
[2] |
J. Appell and P. P. Zabrejko, Nonlinear Superposition Operators, Cambridge University Press, Cambridge, 1990.
doi: 10.1017/CBO9780511897450.![]() ![]() ![]() |
[3] |
R. Beals and V. Protopopescu, Abstract time-dependent transport equations, J. Math. Anal. Appl., 121 (1987), 370-405.
doi: 10.1016/0022-247X(87)90252-6.![]() ![]() ![]() |
[4] |
M. Cessenat, Théorèmes de trace $L^p$ pour des espaces de fonctions de la neutronique, C. R. Acad. Sci. Paris Sér. I Math., 299 (1984), 831-834.
![]() ![]() |
[5] |
M. Cessenat, Théorèmes de trace pour des espaces de fonctions de la neutronique, C. R. Acad. Sci. Paris Sér I Math., 300 (1985), 89-92.
![]() ![]() |
[6] |
M. Chabi, Théorie de scattering dans les espaces de Banach réticulés. Transport singulier dans $L^1$, Thèse de doctorat, Université de Franche-Comté, 1995.
![]() |
[7] |
M. Chabi and K. Latrach, On singular mono-energetic transport equations in slab geometry, Math. Methods Appl. Sci., 25 (2002), 1121-1147.
doi: 10.1002/mma.330.![]() ![]() ![]() |
[8] |
M. Chabi and K. Latrach, Singular one-dimensional transport equations on $L_p$-spaces, J. Math. Anal. Appl., 283 (2003), 319-336.
doi: 10.1016/S0022-247X(03)00299-3.![]() ![]() ![]() |
[9] |
P. Dràbek, A. Kufner and F. Nicolosi, Quasilinear Elliptic Equations with Degenerations and Singularities, Walter de Gruyter & Co., Berlin, 1997.
doi: 10.1515/9783110804775.![]() ![]() ![]() |
[10] |
J. Garcia-Falset, K. Latrach and A. Zeghal, Existence and uniqueness results for a nonlinear evolution equation arising in growing cell populations, Nonlinear Anal., 97 (2014), 210-227.
doi: 10.1016/j.na.2013.11.027.![]() ![]() ![]() |
[11] |
K. J{ö}rgens, Linear Integral Operators, Pitman, Advanced Publishing Program, Boston, 1982.
![]() ![]() |
[12] |
M. A. Krasnoselskii, et al., Integral Operators in Spaces of Summable Functions, Noordhoff, Leyden, 1976.
![]() ![]() |
[13] |
K. Latrach, Introduction à la Théorie de Points Fixes Métrique et Topologique avec Apllications, Edition Ellipses, Collection Références Sciences, 2017.
![]() |
[14] |
K. Latrach, H. Oummi and A. Zeghal, Existence results for nonlinear mono-energetic singular transport equations: $L^1$-spaces, Mediterr. J. Math., 16 (2019), 22 pp.
doi: 10.1007/s00009-018-1282-x.![]() ![]() ![]() |
[15] |
K. Latrach, M. A. Taoudi and A. Zeghal, Some fixed point theorems of the Schauder and the Krasnosel'skii type and application to nonlinear transport equations, J. Differential Equations, 221 (2006), 256-271.
doi: 10.1016/j.jde.2005.04.010.![]() ![]() ![]() |
[16] |
K. Latrach and A. Zeghal, Existence results for a nonlinear boundary value problem arising in growing cell populations, Math. Models Methods Appl. Sci., 13 (2003), 1-17.
doi: 10.1142/S0218202503002350.![]() ![]() ![]() |
[17] |
B. Lods, On linear kinetic equations involving unbounded cross-sections, Math. Methods Appl. Sci., 27 (2004), 1049-1075.
doi: 10.1002/mma.485.![]() ![]() ![]() |
[18] |
M. Mokhtar-Kharroubi, Time asymptotic behaviour and compactness in neutron transport theory, European J. of Mech. B Fluids, 11 (1992), 39-68.
![]() ![]() |
[19] |
M. Mokhtar-Kharroubi, Mathematical Topics in Neutron Transport Theory. New Aspects, Series on advances in Mathematics for Applied Sciences, 46, World Scientific, 1997.
doi: 10.1142/3288.![]() ![]() ![]() |
[20] |
M. Mokhtar-Kharroubi, Optimal spectral theory of the linear Boltzmann equation, J. Funct. Anal., 226 (2005), 21-47.
doi: 10.1016/j.jfa.2005.02.014.![]() ![]() ![]() |
[21] |
B. Montagnini and M. L. Demuru, Complete continuity of the free gas scattering operator in neutron thermalization theory, J. Math. Anal. Appl., 12 (1965), 49-57.
doi: 10.1016/0022-247X(65)90052-1.![]() ![]() ![]() |
[22] |
D. R. Smart, Fixed Point Theorems, Cambridge University Press, Cambridge, 1974.
![]() ![]() |
[23] |
A. Suhadolc, Linearized Boltzmann equation in $L^1$ space, J. Math. Anal. Appl., 35 (1971), 1-13.
doi: 10.1016/0022-247X(71)90231-9.![]() ![]() ![]() |