# American Institute of Mathematical Sciences

January  2022, 15(1): 229-243. doi: 10.3934/dcdss.2021029

## Positive solutions for the $p(x)-$Laplacian : Application of the Nehari method

 Laboratory of Systems Engineering and Information Technologies (LISTI), National School of Applied Sciences of Agadir, Ibn Zohr University, Morocco

* Corresponding author: Said Taarabti (s.taarabti@uiz.ac.ma)

Received  August 2020 Revised  February 2021 Published  January 2022 Early access  March 2021

In this paper, we study the existence of positive solutions of the following equation
 $$$(P_{\lambda}) \left\{ \begin{array}{rclll} - \Delta_{p(x)} u+V(x)\vert u\vert^{p(x)-2}u & = & \lambda k(x) \vert u\vert^{\alpha(x)-2}u\\ &+& h(x) \vert u\vert^{\beta(x)-2}u&\mbox{ in }&\Omega\\ u& = &0 &\mbox{ on }& \partial \Omega. \end{array} \right.\;\;\;\;\;\;\;\;\;\;\;\;\;\left( 1 \right)$$$
The study of the problem
 $(P_{\lambda})$
needs generalized Lebesgue and Sobolev spaces. In this work, under suitable assumptions, we prove that some variational methods still work. We use them to prove the existence of positive solutions to the problem
 $(P_{\lambda})$
in
 $W_{0}^{1,p(x)}(\Omega)$
.
Citation: Said Taarabti. Positive solutions for the $p(x)-$Laplacian : Application of the Nehari method. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 229-243. doi: 10.3934/dcdss.2021029
##### References:
 [1] E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fluids, Arch.Ration. Mech. Anal., 164 (2002), 213-259.  doi: 10.1007/s00205-002-0208-7. [2] G. A. Afrouzi, S. Mahdavi and Z. Naghizadeh, The Nehari manifold for $p-$Laplacian equation with Dirichlet boundary condition, Nonlinear Anal. Model. Control, 12 (2007). doi: 10.15388/NA.2007.12.2.14705. [3] C. O. Alves and J. L. P. Barreiro, Existence and multiplicity of solutions for a $p(x)-$Laplacian equation with critical growth, J. Math. Anal. Appl., 403 (2013), 143-154.  doi: 10.1016/j.jmaa.2013.02.025. [4] A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543.  doi: 10.1006/jfan.1994.1078. [5] S. Antontsev and S. Shmarev, A model porous medium equation with variable exponent of nonlinearity: Existence, uniqueness and localisation properties of solutions, 60 (2005), 515–545. doi: 10.1016/j.na.2004.09.026. [6] C. O. Alves, M. A. S. Souto, Existence of solutions for a class of problems in $\mathbb{R}^N$ involving the $p(x)$-Laplacian, Nonlinear Differential Equations Appl., 66 (2006), 17-32. doi: 10.1007/3-7643-7401-2_2. [7] B. Cekic and R. A. Mashiyev, Existence and localization results for $p(x)$-Laplacian via topological methods, Fixed Point Theory Appl., (2010), Art. ID 120646. doi: 10.1155/2010/120646. [8] J. Chabrowski and Y. Fu, Existence of solutions for $p(x)$-Laplacian problems on a bounded domain, J. Math. Anal. Appl., 306 (2005), 604-618.  doi: 10.1016/j.jmaa.2004.10.028. [9] Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image processing, SIAM J. Appl. Math., 66 (2006), 1383-1406.  doi: 10.1137/050624522. [10] F. J. S. A. Corrêa and G. M. Figueiredo, On an elliptic equation of $p$-Kirchhoff type via variational methods, Bull. Austral. Math. Soc., 74 (2006), 263-277.  doi: 10.1017/S000497270003570X. [11] J. P. P. Da Silva, On some multiple solutions for a $p(x)$-Laplacian equation with critical growth, J. Math. Anal. Appl., 436 (2016), 782-795.  doi: 10.1016/j.jmaa.2015.11.078. [12] L. Diening, P. Hasto and A. Nekvinda, Open problems in variable exponent Lebesgue and Sobolev spaces, FSDONA04 Proceedings, Milovy, Czech Republic, (2004), 38–58. [13] P. Drábek and S. I. Pohozaev, Positive solutions for the $p-$Laplacian: Application of the fibrering method, Proceedings of the Royal Society of Edinburgh, 127A (1997) 703–726. doi: 10.1017/S0308210500023787. [14] M. Dreher, The Kirchhoff equation for the $p$-Laplacian, Rend. Semin. Mat. Univ. Politec. Torino, 64 (2006), 217-238. [15] M. Dreher, The wave equation for the $p$-Laplacian, Hokkaido Math. J., 36 (2007), 21-52.  doi: 10.14492/hokmj/1285766660. [16] D. E. Edmunds and J. Rákosník, Density of smooth functions in $W^{k, p(x)}(\Omega)$, Proc. Roy. Soc. London Ser. A, 437 (1992), 229-236.  doi: 10.1098/rspa.1992.0059. [17] D. Edmunds and J. Rákosník, Sobolev embeddings with variable exponent, Stud. Math., 143 (2000) 267–293. doi: 10.4064/sm-143-3-267-293. [18] X. Fan, J. Shen and D. Zhao, Sobolev embedding theorems for spaces $W^{k, p(x)}(\Omega)$, J. Math. Anal. Appl, 262 (2001), 749-760.  doi: 10.1006/jmaa.2001.7618. [19] L. Fan and D. Zhao, On the spaces $L^{p(x)}$ and $W^{m; p(x)}$, J. Math. Anal. Appl., 263 (2001), 424-446.  doi: 10.1006/jmaa.2000.7617. [20] X. L. Fan, On the sub-supersolution method for $p(x)-$Laplacian equations, J. Math. Anal. Appl, 330 (2007) 665–682. doi: 10.1016/j.jmaa.2006.07.093. [21] X. L. Fan and Q. H. Zhang, Existence of solutions for $p(x)$-Laplacian Dirichlet problem, Nonlinear Anal., 52 (2003), 1843-1852.  doi: 10.1016/S0362-546X(02)00150-5. [22] X. L. Fan, Q. H. Zhang and D. Zhao, Eigenvalues of $p(x)$-Laplacian Dirichlet problem, J. Math. Anal. Appl., 302 (2005), 306-317.  doi: 10.1016/j.jmaa.2003.11.020. [23] X. L. Fan, Y. Z. Zhao and Q. H. Zhang, A strong maximum principle for $p(x)-$Laplace equations (in Chinese), Chinese Ann. Math. Ser. A, 24 (2003), 495-500. [24] R. Kajikia, A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations, J. Funct. Anal., 225 (2005) 352–370. doi: 10.1016/j.jfa.2005.04.005. [25] O. Kováčik and J. Rǎkosník, On spaces $L^{p(x)}$ and $W^{k, p(x)}$, Czechoslovak Math. J., 41 (1991), 592-618. [26] H. Lane, On the theoretical temperature of the sun under the hypothesis of a gaseous mass maintaining its volume by its internal heat and depending on the laws of gases known to terrestrial experiment, Am. J. Sci., 50 (1869), 57-74.  doi: 10.1016/B978-0-08-006653-0.50032-3. [27] A. Marcos and A. Abdou, A. Existence of solutions for a nonhomogeneous Dirichlet problem involving $p(x)$-Laplacian operator and indefinite weight, Bound Value Probl., 171 (2019). doi: 10.1186/s13661-019-1276-z. [28] M. Mihailescu and V. Radulescu, On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent, Proc. Amer. Math. Soc., 135 (2007), 2929-2937.  doi: 10.1090/S0002-9939-07-08815-6. [29] R. A. Mashiyev, S. Ogras, Z. Yucedag and M. Avci, The Nehari manifold approach for Dirichlet prioblem involving the $p(x)-$laplacien equation, J. Korean Math. Soc., 47 (2010), 845-860.  doi: 10.4134/JKMS.2010.47.4.845. [30] W. Orlicz, $\ddot{U}$ber konjugierte Exponentenfolgen, Studia Math., 3 (1931), 200-211. [31] S. H. Rasouli and K. Fallah, The Nehari manifold approach for a $p(x)-$Laplacien problem with nonlinear boundary conditions, Ukrainian Mathematical Journal, 69, 2017, 92–103. doi: 10.1007/s11253-017-1350-6. [32] V. Rǎdulescu and D. Repovš, Combined effects in nonlinear problems arising in the study of anisotropic continuous media, Nonlinear Anal., 75 (2012), 1524-1530.  doi: 10.1016/j.na.2011.01.037. [33] M. Ruzicka, Electrorheological fluids: Modeling and mathematical theory, Lecture Note in Mathematics, 1748, Springer-Verlag, Berlin (2000). doi: 10.1007/BFb0104029. [34] S. Saiedinezhad and M. B. Ghaemi, The fibering map approach to a quasilinear degenerate $p(x)-$Laplacian equation, Bull. Iranian Math. Soc., 41 (2015), 1477-1492. [35] K. Saoudi, Existence and nonexistence of positive solutions for quasilinear elliptic problem, Abstract and Applied Analysis, (2012), Art. ID 275748. doi: 10.1155/2012/275748. [36] K. Saoudi, Existence and multiplicity of solutions for a quasilinear equation involving the $p(x)$-Laplace operator, Complex Variables and Elliptic Equations, 62 (2017), 318-332.  doi: 10.1080/17476933.2016.1219999. [37] S. Samko, On a progress in the theory of Lebesgue spaces with variable exponent: Maximal and singular operators, Integral Transforms Spec. Funct., 16 (2005), 461-482.  doi: 10.1080/10652460412331320322. [38] A. Silva, Multiple solutions for the $p(x)$-Laplace operator with critical growth, Adv. Nonlinear Stud., 11 (2011), 63-75.  doi: 10.1515/ans-2011-0103. [39] N. S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math., 20 (1967), 721-747.  doi: 10.1002/cpa.3160200406. [40] Z. Y$\ddot{u}$cedaǧ, Solutions of nonlinear problems involving p(x)-Laplacian operator, Adv. Nonlinear Anal., 4 (2015), 285-293.  doi: 10.1515/anona-2015-0044. [41] X. Zhang and X. Liu, The local boundedness and Harnack inequality of p(x)-Laplace equation, J. Math. Anal. Appl., 332 (2007), 209-218.  doi: 10.1016/j.jmaa.2006.10.021. [42] V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR. Izv, 9 (1987), 33-66. [43] V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat., 50 (1986), 675-710. [44] V. Zhikov, On passing to the limit in nonlinear variational problem, Math. Sb., 183 (1992), 47-84.  doi: 10.1070/SM1993v076n02ABEH003421.

show all references

##### References:
 [1] E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fluids, Arch.Ration. Mech. Anal., 164 (2002), 213-259.  doi: 10.1007/s00205-002-0208-7. [2] G. A. Afrouzi, S. Mahdavi and Z. Naghizadeh, The Nehari manifold for $p-$Laplacian equation with Dirichlet boundary condition, Nonlinear Anal. Model. Control, 12 (2007). doi: 10.15388/NA.2007.12.2.14705. [3] C. O. Alves and J. L. P. Barreiro, Existence and multiplicity of solutions for a $p(x)-$Laplacian equation with critical growth, J. Math. Anal. Appl., 403 (2013), 143-154.  doi: 10.1016/j.jmaa.2013.02.025. [4] A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543.  doi: 10.1006/jfan.1994.1078. [5] S. Antontsev and S. Shmarev, A model porous medium equation with variable exponent of nonlinearity: Existence, uniqueness and localisation properties of solutions, 60 (2005), 515–545. doi: 10.1016/j.na.2004.09.026. [6] C. O. Alves, M. A. S. Souto, Existence of solutions for a class of problems in $\mathbb{R}^N$ involving the $p(x)$-Laplacian, Nonlinear Differential Equations Appl., 66 (2006), 17-32. doi: 10.1007/3-7643-7401-2_2. [7] B. Cekic and R. A. Mashiyev, Existence and localization results for $p(x)$-Laplacian via topological methods, Fixed Point Theory Appl., (2010), Art. ID 120646. doi: 10.1155/2010/120646. [8] J. Chabrowski and Y. Fu, Existence of solutions for $p(x)$-Laplacian problems on a bounded domain, J. Math. Anal. Appl., 306 (2005), 604-618.  doi: 10.1016/j.jmaa.2004.10.028. [9] Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image processing, SIAM J. Appl. Math., 66 (2006), 1383-1406.  doi: 10.1137/050624522. [10] F. J. S. A. Corrêa and G. M. Figueiredo, On an elliptic equation of $p$-Kirchhoff type via variational methods, Bull. Austral. Math. Soc., 74 (2006), 263-277.  doi: 10.1017/S000497270003570X. [11] J. P. P. Da Silva, On some multiple solutions for a $p(x)$-Laplacian equation with critical growth, J. Math. Anal. Appl., 436 (2016), 782-795.  doi: 10.1016/j.jmaa.2015.11.078. [12] L. Diening, P. Hasto and A. Nekvinda, Open problems in variable exponent Lebesgue and Sobolev spaces, FSDONA04 Proceedings, Milovy, Czech Republic, (2004), 38–58. [13] P. Drábek and S. I. Pohozaev, Positive solutions for the $p-$Laplacian: Application of the fibrering method, Proceedings of the Royal Society of Edinburgh, 127A (1997) 703–726. doi: 10.1017/S0308210500023787. [14] M. Dreher, The Kirchhoff equation for the $p$-Laplacian, Rend. Semin. Mat. Univ. Politec. Torino, 64 (2006), 217-238. [15] M. Dreher, The wave equation for the $p$-Laplacian, Hokkaido Math. J., 36 (2007), 21-52.  doi: 10.14492/hokmj/1285766660. [16] D. E. Edmunds and J. Rákosník, Density of smooth functions in $W^{k, p(x)}(\Omega)$, Proc. Roy. Soc. London Ser. A, 437 (1992), 229-236.  doi: 10.1098/rspa.1992.0059. [17] D. Edmunds and J. Rákosník, Sobolev embeddings with variable exponent, Stud. Math., 143 (2000) 267–293. doi: 10.4064/sm-143-3-267-293. [18] X. Fan, J. Shen and D. Zhao, Sobolev embedding theorems for spaces $W^{k, p(x)}(\Omega)$, J. Math. Anal. Appl, 262 (2001), 749-760.  doi: 10.1006/jmaa.2001.7618. [19] L. Fan and D. Zhao, On the spaces $L^{p(x)}$ and $W^{m; p(x)}$, J. Math. Anal. Appl., 263 (2001), 424-446.  doi: 10.1006/jmaa.2000.7617. [20] X. L. Fan, On the sub-supersolution method for $p(x)-$Laplacian equations, J. Math. Anal. Appl, 330 (2007) 665–682. doi: 10.1016/j.jmaa.2006.07.093. [21] X. L. Fan and Q. H. Zhang, Existence of solutions for $p(x)$-Laplacian Dirichlet problem, Nonlinear Anal., 52 (2003), 1843-1852.  doi: 10.1016/S0362-546X(02)00150-5. [22] X. L. Fan, Q. H. Zhang and D. Zhao, Eigenvalues of $p(x)$-Laplacian Dirichlet problem, J. Math. Anal. Appl., 302 (2005), 306-317.  doi: 10.1016/j.jmaa.2003.11.020. [23] X. L. Fan, Y. Z. Zhao and Q. H. Zhang, A strong maximum principle for $p(x)-$Laplace equations (in Chinese), Chinese Ann. Math. Ser. A, 24 (2003), 495-500. [24] R. Kajikia, A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations, J. Funct. Anal., 225 (2005) 352–370. doi: 10.1016/j.jfa.2005.04.005. [25] O. Kováčik and J. Rǎkosník, On spaces $L^{p(x)}$ and $W^{k, p(x)}$, Czechoslovak Math. J., 41 (1991), 592-618. [26] H. Lane, On the theoretical temperature of the sun under the hypothesis of a gaseous mass maintaining its volume by its internal heat and depending on the laws of gases known to terrestrial experiment, Am. J. Sci., 50 (1869), 57-74.  doi: 10.1016/B978-0-08-006653-0.50032-3. [27] A. Marcos and A. Abdou, A. Existence of solutions for a nonhomogeneous Dirichlet problem involving $p(x)$-Laplacian operator and indefinite weight, Bound Value Probl., 171 (2019). doi: 10.1186/s13661-019-1276-z. [28] M. Mihailescu and V. Radulescu, On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent, Proc. Amer. Math. Soc., 135 (2007), 2929-2937.  doi: 10.1090/S0002-9939-07-08815-6. [29] R. A. Mashiyev, S. Ogras, Z. Yucedag and M. Avci, The Nehari manifold approach for Dirichlet prioblem involving the $p(x)-$laplacien equation, J. Korean Math. Soc., 47 (2010), 845-860.  doi: 10.4134/JKMS.2010.47.4.845. [30] W. Orlicz, $\ddot{U}$ber konjugierte Exponentenfolgen, Studia Math., 3 (1931), 200-211. [31] S. H. Rasouli and K. Fallah, The Nehari manifold approach for a $p(x)-$Laplacien problem with nonlinear boundary conditions, Ukrainian Mathematical Journal, 69, 2017, 92–103. doi: 10.1007/s11253-017-1350-6. [32] V. Rǎdulescu and D. Repovš, Combined effects in nonlinear problems arising in the study of anisotropic continuous media, Nonlinear Anal., 75 (2012), 1524-1530.  doi: 10.1016/j.na.2011.01.037. [33] M. Ruzicka, Electrorheological fluids: Modeling and mathematical theory, Lecture Note in Mathematics, 1748, Springer-Verlag, Berlin (2000). doi: 10.1007/BFb0104029. [34] S. Saiedinezhad and M. B. Ghaemi, The fibering map approach to a quasilinear degenerate $p(x)-$Laplacian equation, Bull. Iranian Math. Soc., 41 (2015), 1477-1492. [35] K. Saoudi, Existence and nonexistence of positive solutions for quasilinear elliptic problem, Abstract and Applied Analysis, (2012), Art. ID 275748. doi: 10.1155/2012/275748. [36] K. Saoudi, Existence and multiplicity of solutions for a quasilinear equation involving the $p(x)$-Laplace operator, Complex Variables and Elliptic Equations, 62 (2017), 318-332.  doi: 10.1080/17476933.2016.1219999. [37] S. Samko, On a progress in the theory of Lebesgue spaces with variable exponent: Maximal and singular operators, Integral Transforms Spec. Funct., 16 (2005), 461-482.  doi: 10.1080/10652460412331320322. [38] A. Silva, Multiple solutions for the $p(x)$-Laplace operator with critical growth, Adv. Nonlinear Stud., 11 (2011), 63-75.  doi: 10.1515/ans-2011-0103. [39] N. S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math., 20 (1967), 721-747.  doi: 10.1002/cpa.3160200406. [40] Z. Y$\ddot{u}$cedaǧ, Solutions of nonlinear problems involving p(x)-Laplacian operator, Adv. Nonlinear Anal., 4 (2015), 285-293.  doi: 10.1515/anona-2015-0044. [41] X. Zhang and X. Liu, The local boundedness and Harnack inequality of p(x)-Laplace equation, J. Math. Anal. Appl., 332 (2007), 209-218.  doi: 10.1016/j.jmaa.2006.10.021. [42] V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR. Izv, 9 (1987), 33-66. [43] V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat., 50 (1986), 675-710. [44] V. Zhikov, On passing to the limit in nonlinear variational problem, Math. Sb., 183 (1992), 47-84.  doi: 10.1070/SM1993v076n02ABEH003421.
 [1] Qingfang Wang. The Nehari manifold for a fractional Laplacian equation involving critical nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2261-2281. doi: 10.3934/cpaa.2018108 [2] Agnid Banerjee, Nicola Garofalo. On the Dirichlet boundary value problem for the normalized $p$-laplacian evolution. Communications on Pure and Applied Analysis, 2015, 14 (1) : 1-21. doi: 10.3934/cpaa.2015.14.1 [3] Nicola Abatangelo, Serena Dipierro, Mouhamed Moustapha Fall, Sven Jarohs, Alberto Saldaña. Positive powers of the Laplacian in the half-space under Dirichlet boundary conditions. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1205-1235. doi: 10.3934/dcds.2019052 [4] Petru Jebelean. Infinitely many solutions for ordinary $p$-Laplacian systems with nonlinear boundary conditions. Communications on Pure and Applied Analysis, 2008, 7 (2) : 267-275. doi: 10.3934/cpaa.2008.7.267 [5] Pavel Jirásek. On Compactness Conditions for the $p$-Laplacian. Communications on Pure and Applied Analysis, 2016, 15 (3) : 715-726. doi: 10.3934/cpaa.2016.15.715 [6] Caisheng Chen, Qing Yuan. Existence of solution to $p-$Kirchhoff type problem in $\mathbb{R}^N$ via Nehari manifold. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2289-2303. doi: 10.3934/cpaa.2014.13.2289 [7] Anna Mercaldo, Julio D. Rossi, Sergio Segura de León, Cristina Trombetti. Behaviour of $p$--Laplacian problems with Neumann boundary conditions when $p$ goes to 1. Communications on Pure and Applied Analysis, 2013, 12 (1) : 253-267. doi: 10.3934/cpaa.2013.12.253 [8] Ángel Arroyo, Joonas Heino, Mikko Parviainen. Tug-of-war games with varying probabilities and the normalized p(x)-laplacian. Communications on Pure and Applied Analysis, 2017, 16 (3) : 915-944. doi: 10.3934/cpaa.2017044 [9] Raúl Ferreira, Julio D. Rossi. Decay estimates for a nonlocal $p-$Laplacian evolution problem with mixed boundary conditions. Discrete and Continuous Dynamical Systems, 2015, 35 (4) : 1469-1478. doi: 10.3934/dcds.2015.35.1469 [10] Trad Alotaibi, D. D. Hai, R. Shivaji. Existence and nonexistence of positive radial solutions for a class of $p$-Laplacian superlinear problems with nonlinear boundary conditions. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4655-4666. doi: 10.3934/cpaa.2020131 [11] Eun Kyoung Lee, R. Shivaji, Inbo Sim, Byungjae Son. Analysis of positive solutions for a class of semipositone p-Laplacian problems with nonlinear boundary conditions. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1139-1154. doi: 10.3934/cpaa.2019055 [12] Gabriele Bonanno, Giuseppina D'Aguì. Mixed elliptic problems involving the $p-$Laplacian with nonhomogeneous boundary conditions. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5797-5817. doi: 10.3934/dcds.2017252 [13] Dimitri Mugnai, Kanishka Perera, Edoardo Proietti Lippi. A priori estimates for the Fractional p-Laplacian with nonlocal Neumann boundary conditions and applications. Communications on Pure and Applied Analysis, 2022, 21 (1) : 275-292. doi: 10.3934/cpaa.2021177 [14] Mihai Mihăilescu, Julio D. Rossi. Monotonicity with respect to $p$ of the First Nontrivial Eigenvalue of the $p$-Laplacian with Homogeneous Neumann Boundary Conditions. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4363-4371. doi: 10.3934/cpaa.2020198 [15] Xiaoming He, Marco Squassina, Wenming Zou. The Nehari manifold for fractional systems involving critical nonlinearities. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1285-1308. doi: 10.3934/cpaa.2016.15.1285 [16] Umberto De Maio, Peter I. Kogut, Gabriella Zecca. On optimal $L^1$-control in coefficients for quasi-linear Dirichlet boundary value problems with $BMO$-anisotropic $p$-Laplacian. Mathematical Control and Related Fields, 2020, 10 (4) : 827-854. doi: 10.3934/mcrf.2020021 [17] Micol Amar. A note on boundary layer effects in periodic homogenization with Dirichlet boundary conditions. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 537-556. doi: 10.3934/dcds.2000.6.537 [18] Lujuan Yu. The asymptotic behaviour of the $p(x)$-Laplacian Steklov eigenvalue problem. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2621-2637. doi: 10.3934/dcdsb.2020025 [19] Goro Akagi, Kei Matsuura. Well-posedness and large-time behaviors of solutions for a parabolic equation involving $p(x)$-Laplacian. Conference Publications, 2011, 2011 (Special) : 22-31. doi: 10.3934/proc.2011.2011.22 [20] Elhoussine Azroul, Abdelmoujib Benkirane, and Mohammed Shimi. On a nonlocal problem involving the fractional $p(x,.)$-Laplacian satisfying Cerami condition. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3479-3495. doi: 10.3934/dcdss.2020425

2020 Impact Factor: 2.425