doi: 10.3934/dcdss.2021031

Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point

Laboratoire de recherche: Analyse, Probabilité et Fractales, Faculté des Sciences de Monastir, Av. de l'environement, 5000 Monastir, Tunisie

Received  December 2019 Revised  January 2021 Published  March 2021

We consider the nonlinear Schrödinger equation in dimension one with a nonlinearity concentrated in one point. We prove that this equation provides an infinite dimensional dynamical system. We also study the asymptotic behavior of the dynamics. We prove the existence of a global attractor for the system.

Citation: Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2021031
References:
[1]

R. Adami and A. Teta, A simple model of concentrated nonlinearity: Operator theory, Mathematical Results in Quantum Mechanics, 108 (1999), 183-189.  doi: 10.1007/978-3-0348-8745-8_13.  Google Scholar

[2]

N. Akroune, Regularity of the attractor for a weakly damped nonlinear Schrödinger equation on $\mathbb R$, Appl. Math. Lett., 12 (1999), 45-48.  doi: 10.1016/S0893-9659(98)00170-0.  Google Scholar

[3]

J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Syst., 10 (2004), 31-52.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[4]

O. M. Bulashenko, V. A. Kochelap and L. L. Bonilla, Coherent patterns and self-indiced diffraction of electrons on a thin nonlinear layer, Phys.Rev B, 54 (1996), 1537–1540. arXiv: cond-mat/9604164. doi: 10.1103/PhysRevB.54.1537.  Google Scholar

[5]

T. Cazenave, Semilinear Schrödinger Equations, , Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. doi: 10.1090/cln/010.  Google Scholar

[6]

R. H. Goodman, P. J. Holmes and M. I. Wenstein, Strong NLS soliton-defect interactions, Physica D, 192 (2004), 215–248. arXiv: nlin/0203057 doi: 10.1016/j.physd.2004.01.021.  Google Scholar

[7]

O. Goubet, Regularity of the attractor for the weakly damped nonlinear Schrödinger equations, Appl. Anal., 60 (1996), 99-119.  doi: 10.1080/00036819608840420.  Google Scholar

[8]

J. Holmer and C. Liu, Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity I: Basic theory, J. Math. Anal. Appl., 483 (2020), 123522, 20 pp. arXiv: 1510.03491 doi: 10.1016/j.jmaa.2019.123522.  Google Scholar

[9]

G. Jona-Lasinio, C. Presilla and J. Sjöstrand, On Schrödinger equations with concentrated nonlinearities, Ann. Phys., 240 (1995), 1–21. arXiv: cond-mat/9501037 doi: 10.1006/aphy.1995.1040.  Google Scholar

[10]

W. Kechiche, Regularity of the global attractor for a nonlinear Schrödinger equation with a point defect, Commun. Pure Appl. Anal., 16 (2017), 1233-1252.  doi: 10.3934/cpaa.2017060.  Google Scholar

[11]

W. Kechiche, Systemes d'Equations de Schrödinger non Lin aires, Ph. D thesis, Université de Monastir et Universit'e de Picardie Jules Vernes, 2012 (To appear). Google Scholar

[12]

P. Laurençot, Long-time behavior for weakly damped driven nonlinear Schrödinger equation in $\mathbb R^{N}, \; N\leq 3$, NoDEA Nonlinear Differential Equations Appl., 2 (1995), 357-369.  doi: 10.1007/BF01261181.  Google Scholar

[13]

K. Lu and B. Wang, Global attractor for the Klein-Gordon-Schrödinger equations in unbounded domains, J. Differential Equations, 170 (2001), 281-316.  doi: 10.1006/jdeq.2000.3827.  Google Scholar

[14]

B. A. Malomed and M. Ya. Azbel, Modulational instability of a wave scattered by a nonlinear center, Phys. Rev. B, 47 (1993), 10402. doi: 10.1103/PhysRevB.47.10402.  Google Scholar

[15]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equation in bounded and unbounded domains, Handbook of Differential Equations: Evolutionary Equations, 4 (2008), 103-200.  doi: 10.1016/S1874-5717(08)00003-0.  Google Scholar

[16]

I. Moise, R. Rosa and X. Wang, Attractors for noncompact semigroups via energy equations, Nonlinearity, 11 (1998), 1369–1393. https://pdfs.semanticscholar.org/cfbf/a1fb70b618f40193593a93d1b39f551a772c.pdf doi: 10.1088/0951-7715/11/5/012.  Google Scholar

[17]

F. Nier, The dynamics of some quantum open systems with short-rang nonlinearities, Nonlinearity, 11 (1998), 1127-1172.  doi: 10.1088/0951-7715/11/4/022.  Google Scholar

[18]

G. Raugel, Global attractor in partial differential equations, Handbook of Dynamical Systems, 2 (2002), 885-982.  doi: 10.1016/S1874-575X(02)80038-8.  Google Scholar

[19]

R. Rosa, The global attractor of weakly damped forced Korteweg-De Vries equation in $H^1(\mathbb R)$, Mat. Contemp. 19 (2000), 129–152. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.407.421&rep=rep1&type=pdf  Google Scholar

[20]

C. Sulem and P.-L. Sulem, Focusing nonlinear Schrödinger equation and wave-packet collapse, Nonlinear Analysis, 30 (1997), 833-844.  doi: 10.1016/S0362-546X(96)00168-X.  Google Scholar

[21]

R. Temam, Infinite-Dimentional Dynamical Systems in Mecanics and Physics, Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[22]

X. Wang, An energy equation for the weakly damped driven nonlinear Schrödinger equations and its application to their attractors, Physica D, 88 (1995), 167-175.  doi: 10.1016/0167-2789(95)00196-B.  Google Scholar

show all references

References:
[1]

R. Adami and A. Teta, A simple model of concentrated nonlinearity: Operator theory, Mathematical Results in Quantum Mechanics, 108 (1999), 183-189.  doi: 10.1007/978-3-0348-8745-8_13.  Google Scholar

[2]

N. Akroune, Regularity of the attractor for a weakly damped nonlinear Schrödinger equation on $\mathbb R$, Appl. Math. Lett., 12 (1999), 45-48.  doi: 10.1016/S0893-9659(98)00170-0.  Google Scholar

[3]

J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Syst., 10 (2004), 31-52.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[4]

O. M. Bulashenko, V. A. Kochelap and L. L. Bonilla, Coherent patterns and self-indiced diffraction of electrons on a thin nonlinear layer, Phys.Rev B, 54 (1996), 1537–1540. arXiv: cond-mat/9604164. doi: 10.1103/PhysRevB.54.1537.  Google Scholar

[5]

T. Cazenave, Semilinear Schrödinger Equations, , Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. doi: 10.1090/cln/010.  Google Scholar

[6]

R. H. Goodman, P. J. Holmes and M. I. Wenstein, Strong NLS soliton-defect interactions, Physica D, 192 (2004), 215–248. arXiv: nlin/0203057 doi: 10.1016/j.physd.2004.01.021.  Google Scholar

[7]

O. Goubet, Regularity of the attractor for the weakly damped nonlinear Schrödinger equations, Appl. Anal., 60 (1996), 99-119.  doi: 10.1080/00036819608840420.  Google Scholar

[8]

J. Holmer and C. Liu, Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity I: Basic theory, J. Math. Anal. Appl., 483 (2020), 123522, 20 pp. arXiv: 1510.03491 doi: 10.1016/j.jmaa.2019.123522.  Google Scholar

[9]

G. Jona-Lasinio, C. Presilla and J. Sjöstrand, On Schrödinger equations with concentrated nonlinearities, Ann. Phys., 240 (1995), 1–21. arXiv: cond-mat/9501037 doi: 10.1006/aphy.1995.1040.  Google Scholar

[10]

W. Kechiche, Regularity of the global attractor for a nonlinear Schrödinger equation with a point defect, Commun. Pure Appl. Anal., 16 (2017), 1233-1252.  doi: 10.3934/cpaa.2017060.  Google Scholar

[11]

W. Kechiche, Systemes d'Equations de Schrödinger non Lin aires, Ph. D thesis, Université de Monastir et Universit'e de Picardie Jules Vernes, 2012 (To appear). Google Scholar

[12]

P. Laurençot, Long-time behavior for weakly damped driven nonlinear Schrödinger equation in $\mathbb R^{N}, \; N\leq 3$, NoDEA Nonlinear Differential Equations Appl., 2 (1995), 357-369.  doi: 10.1007/BF01261181.  Google Scholar

[13]

K. Lu and B. Wang, Global attractor for the Klein-Gordon-Schrödinger equations in unbounded domains, J. Differential Equations, 170 (2001), 281-316.  doi: 10.1006/jdeq.2000.3827.  Google Scholar

[14]

B. A. Malomed and M. Ya. Azbel, Modulational instability of a wave scattered by a nonlinear center, Phys. Rev. B, 47 (1993), 10402. doi: 10.1103/PhysRevB.47.10402.  Google Scholar

[15]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equation in bounded and unbounded domains, Handbook of Differential Equations: Evolutionary Equations, 4 (2008), 103-200.  doi: 10.1016/S1874-5717(08)00003-0.  Google Scholar

[16]

I. Moise, R. Rosa and X. Wang, Attractors for noncompact semigroups via energy equations, Nonlinearity, 11 (1998), 1369–1393. https://pdfs.semanticscholar.org/cfbf/a1fb70b618f40193593a93d1b39f551a772c.pdf doi: 10.1088/0951-7715/11/5/012.  Google Scholar

[17]

F. Nier, The dynamics of some quantum open systems with short-rang nonlinearities, Nonlinearity, 11 (1998), 1127-1172.  doi: 10.1088/0951-7715/11/4/022.  Google Scholar

[18]

G. Raugel, Global attractor in partial differential equations, Handbook of Dynamical Systems, 2 (2002), 885-982.  doi: 10.1016/S1874-575X(02)80038-8.  Google Scholar

[19]

R. Rosa, The global attractor of weakly damped forced Korteweg-De Vries equation in $H^1(\mathbb R)$, Mat. Contemp. 19 (2000), 129–152. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.407.421&rep=rep1&type=pdf  Google Scholar

[20]

C. Sulem and P.-L. Sulem, Focusing nonlinear Schrödinger equation and wave-packet collapse, Nonlinear Analysis, 30 (1997), 833-844.  doi: 10.1016/S0362-546X(96)00168-X.  Google Scholar

[21]

R. Temam, Infinite-Dimentional Dynamical Systems in Mecanics and Physics, Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[22]

X. Wang, An energy equation for the weakly damped driven nonlinear Schrödinger equations and its application to their attractors, Physica D, 88 (1995), 167-175.  doi: 10.1016/0167-2789(95)00196-B.  Google Scholar

[1]

Wided Kechiche. Regularity of the global attractor for a nonlinear Schrödinger equation with a point defect. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1233-1252. doi: 10.3934/cpaa.2017060

[2]

Brahim Alouini. Finite dimensional global attractor for a class of two-coupled nonlinear fractional Schrödinger equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021013

[3]

Brahim Alouini. Finite dimensional global attractor for a damped fractional anisotropic Schrödinger type equation with harmonic potential. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4545-4573. doi: 10.3934/cpaa.2020206

[4]

Rolci Cipolatti, Otared Kavian. On a nonlinear Schrödinger equation modelling ultra-short laser pulses with a large noncompact global attractor. Discrete & Continuous Dynamical Systems, 2007, 17 (1) : 121-132. doi: 10.3934/dcds.2007.17.121

[5]

Brahim Alouini. Global attractor for a one dimensional weakly damped half-wave equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020410

[6]

Olivier Goubet, Ezzeddine Zahrouni. Global attractor for damped forced nonlinear logarithmic Schrödinger equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020393

[7]

Tomás Caraballo, David Cheban. On the structure of the global attractor for infinite-dimensional non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2013, 12 (1) : 281-302. doi: 10.3934/cpaa.2013.12.281

[8]

Mustapha Yebdri. Existence of $ \mathcal{D}- $pullback attractor for an infinite dimensional dynamical system. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021036

[9]

Takahisa Inui. Global dynamics of solutions with group invariance for the nonlinear schrödinger equation. Communications on Pure & Applied Analysis, 2017, 16 (2) : 557-590. doi: 10.3934/cpaa.2017028

[10]

Daiwen Huang, Jingjun Zhang. Global smooth solutions for the nonlinear Schrödinger equation with magnetic effect. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1753-1773. doi: 10.3934/dcdss.2016073

[11]

Jason Murphy, Fabio Pusateri. Almost global existence for cubic nonlinear Schrödinger equations in one space dimension. Discrete & Continuous Dynamical Systems, 2017, 37 (4) : 2077-2102. doi: 10.3934/dcds.2017089

[12]

Chunxiao Guo, Fan Cui, Yongqian Han. Global existence and uniqueness of the solution for the fractional Schrödinger-KdV-Burgers system. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1687-1699. doi: 10.3934/dcdss.2016070

[13]

Xuecheng Wang. Global solution for the $3D$ quadratic Schrödinger equation of $Q(u, \bar{u}$) type. Discrete & Continuous Dynamical Systems, 2017, 37 (9) : 5037-5048. doi: 10.3934/dcds.2017217

[14]

Liren Lin, Tai-Peng Tsai. Mixed dimensional infinite soliton trains for nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2017, 37 (1) : 295-336. doi: 10.3934/dcds.2017013

[15]

Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107

[16]

Olivier Goubet, Wided Kechiche. Uniform attractor for non-autonomous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2011, 10 (2) : 639-651. doi: 10.3934/cpaa.2011.10.639

[17]

Abderrazak Chrifi, Mostafa Abounouh, Hassan Al Moatassime. Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021030

[18]

Walter Dambrosio, Duccio Papini. Multiple homoclinic solutions for a one-dimensional Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1025-1038. doi: 10.3934/dcdss.2016040

[19]

Takafumi Akahori. Low regularity global well-posedness for the nonlinear Schrödinger equation on closed manifolds. Communications on Pure & Applied Analysis, 2010, 9 (2) : 261-280. doi: 10.3934/cpaa.2010.9.261

[20]

Jianbo Cui, Jialin Hong, Liying Sun. On global existence and blow-up for damped stochastic nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6837-6854. doi: 10.3934/dcdsb.2019169

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (31)
  • HTML views (61)
  • Cited by (0)

Other articles
by authors

[Back to Top]