This essay is concerned with the one-dimensional Green-Naghdi equations in the presence of a non-zero vorticity according to the derivation in [
Citation: |
[1] |
S. Alinhac and P. Gérard, Opérateurs Pseudo-différentiels et Théorème de Nash-Moser, Savoirs Actuels, InterEditions, Paris; Éditions du Centre national de la recherche scientifique, Meudon, 1991.
![]() ![]() |
[2] |
B. Alvarez-Samaniego and D. Lannes, Large time existence for 3D water-waves and asymptotics, Invent. Math., 171 (2008), 485-541.
doi: 10.1007/s00222-007-0088-4.![]() ![]() ![]() |
[3] |
S. V. Basenkova, N. N. Morozov and O. P. Pogutse, Dispersive effects in two-dimensional hydrodynamics, Dokl. Akad. Nauk, 293 (1985), 818–822 (transl. Sov. Phys. Dokl., 32 (1987), 262–264).
![]() |
[4] |
P. Bonneton, F. Chazel, D. Lannes, F. Marche and M. Tissier, A splitting approach for the fully nonlinear and weakly dispersive Green-Naghdi model, J. Comput. Phys., 230 (2011), 1479-1498.
doi: 10.1016/j.jcp.2010.11.015.![]() ![]() ![]() |
[5] |
A. Castro and D. Lannes, Fully nonlinear long-wave models in the presence of vorticity, J. Fluid Mech., 759 (2014), 642-675.
doi: 10.1017/jfm.2014.593.![]() ![]() ![]() |
[6] |
A. Castro and D. Lannes, Well-posedness and shallow-water stability for a new Hamiltonian formulation of the water waves equations with vorticity, Indiana Univ. Math. J., 64 (2015), 1169-1270.
doi: 10.1512/iumj.2015.64.5606.![]() ![]() ![]() |
[7] |
Q. Chen, J. T. Kirby, R. A. Dalrymple, A. B. Kennedy and A. Chawla, Boussinesq modeling of wave transformation, breaking, and runup, Part II: Two horizontal dimensions, J. Waterway Port Coastal Ocean Engrg., 126 (2000), 48-56.
doi: 10.1061/(ASCE)0733-950X(2000)126:1(48).![]() ![]() |
[8] |
Q. Chen, J. T. Kirby, R. A. Dalrymple, F. Shi and E. B. Thornton, Boussinesq modeling of longshore currents, J. Geophys. Res., 108 (2003), 3362-3379.
doi: 10.1029/2002JC001308.![]() ![]() |
[9] |
R. Cienfuegos, E. Barthélemy and P. Bonneton, A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations, Part I: Model development and analysis, Int. J. Numer. Meth. Fluids, 51 (2006), 1217-1253.
doi: 10.1002/fld.1141.![]() ![]() ![]() |
[10] |
V. Duchêne and S. Israwi, Well-posedness of the Green-Naghdi and Boussinesq-Peregrine systems, Ann. Math. Blaise Pascal, 25 (2018), 21-74.
doi: 10.5802/ambp.372.![]() ![]() ![]() |
[11] |
V. Duchêne, S. Israwi and R. Talhouk, A new fully justified asymptotic model for the propagation of internal waves in the Camassa-Holm regime, SIAM J. Math. Anal., 47 (2015), 240-290.
doi: 10.1137/130947064.![]() ![]() ![]() |
[12] |
V. Duchêne, S. Israwi and R. Talhouk, A new class of two-layer Green-Naghdi systems with improved frequency dispersion, Stud. Appl. Math., 137 (2016), 356-415.
doi: 10.1111/sapm.12125.![]() ![]() ![]() |
[13] |
D. Dutykh, D. Clamond, P. Milewski and D. Mitsotakis, Finite volume and pseudo-spectral schemes for the fully nonlinear 1D Serre equations, European J. Appl. Math., 24 (2013), 761-787.
doi: 10.1017/S0956792513000168.![]() ![]() ![]() |
[14] |
A. E. Green, N. Laws and P. M. Naghdi, On the theory of water waves, Proc. Royal Soc. London Ser. A, 338 (1974), 43-55.
doi: 10.1098/rspa.1974.0072.![]() ![]() ![]() |
[15] |
A. E. Green and P. M. Naghdi, A derivation of equations for wave propagation in water of variable depth, J. Fluid Mech., 78 (1976), 237-246.
doi: 10.1017/S0022112076002425.![]() ![]() |
[16] |
T. Iguchi, A shallow water approximation for water waves, J. Math. Kyoto Univ., 49 (2009), 13-55.
doi: 10.1215/kjm/1248983028.![]() ![]() ![]() |
[17] |
S. Israwi, Large time existence for 1D Green-Naghdi equations, Nonlinear Anal., 74 (2011), 81-93.
doi: 10.1016/j.na.2010.08.019.![]() ![]() ![]() |
[18] |
S. Israwi and H. Kalisch, Approximate conservation laws in the KdV equation, Phys. Lett. A, 383 (2019), 854-858.
doi: 10.1016/j.physleta.2018.12.009.![]() ![]() ![]() |
[19] |
T. Kano and T. Nishida, Sur les ondes de surface de l'eau avec une justification mathématique des équations des ondes en eau peu profonde, J. Math. Kyoto Univ., 19 (1979), 335-370.
doi: 10.1215/kjm/1250522437.![]() ![]() ![]() |
[20] |
T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907.
doi: 10.1002/cpa.3160410704.![]() ![]() ![]() |
[21] |
M. Kazolea, A. I. Delis, I. K. Nikolos and C. E. Synolakis, An unstructured finite volume numerical scheme for extended 2D Boussinesq-type equations, Coastal Eng., 69 (2012), 42-66.
doi: 10.1016/j.coastaleng.2012.05.008.![]() ![]() |
[22] |
D. Lannes, Sharp estimates for pseudo-differential operators with symbols of limited smoothness and commutators, J. Funct. Anal., 232 (2006), 495-539.
doi: 10.1016/j.jfa.2005.07.003.![]() ![]() ![]() |
[23] |
D. Lannes and P. Bonneton, Derivation of asymptotic two-dimensional time-dependent equations for surface water wave propagation, Phys. Fluids, 21 (2009), 016601.
doi: 10.1063/1.3053183.![]() ![]() |
[24] |
D. Lannes and F. Marche, A new class of fully nonlinear and weakly dispersive Green-Naghdi models for efficient 2D simulations, J. Comput. Physics, 282 (2015), 238-268.
doi: 10.1016/j.jcp.2014.11.016.![]() ![]() ![]() |
[25] |
O. Le Métayer, S. Gavrilyuk and S. Hank, A numerical scheme for the Green-Naghdi model, J. Comp. Phys., 229 (2010), 2034-2045.
doi: 10.1016/j.jcp.2009.11.021.![]() ![]() ![]() |
[26] |
Y. A. Li, A shallow-water approximation to the full water wave problem, Comm. Pure Appl. Math., 59 (2006), 1225-1285.
doi: 10.1002/cpa.20148.![]() ![]() ![]() |
[27] |
N. Makarenko, The second long-wave approximation in the Cauchy-Poisson problem, Dyn. Contin. Media, 77 (1986), 56-72.
![]() ![]() |
[28] |
G. Métivier, Para-differential Calculus and Applications to the Cauchy Problem for Nonlinear Systems, Centro di Ricerca Matematica Ennio De Giorgi (CRM) Series, Vol. 5, Scuola Norm. Sup. Pisa, 2008.
![]() ![]() |
[29] |
L. V. Ovsjannikov, Cauchy problem in a scale of Banach spaces and its application to the shallow water theory justification, In: Appl. Meth. Funct. Anal. Probl. Mech. (IUTAM/IMU-Symp., Marseille, 1975), Lect. Notes Math. 503, Springer, 1976,426–437.
doi: 10.1007/BFb0088777.![]() ![]() ![]() |
[30] |
M. Ricchiuto and A. G. Filippini, Upwind residual discretization of enhanced Boussinesq equations for wave propagation over complex bathymetries, J. Comput. Physics, 271 (2014), 306-341.
doi: 10.1016/j.jcp.2013.12.048.![]() ![]() ![]() |
[31] |
M. E. Taylor, Partial Differential Equations III, Applied Mathematical Sciences, 117, Springer, 2011.
![]() ![]() |
[32] |
G. Wei, J. T. Kirby, S. T. Grilli and R. Subramanya, A fully nonlinear Boussinesq model for surface waves, Part I. Highly nonlinear unsteady waves, J. Fluid Mech., 294 (1995), 71-92.
doi: 10.1017/S0022112095002813.![]() ![]() ![]() |
[33] |
V. E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Applied Mech. and Techn. Phys., 9 (1968), 190-194.
doi: 10.1007/BF00913182.![]() ![]() |
[34] |
Y. Zhang, A. B. Kennedy, N. Panda, C. Dawson and J. J. Westerink, Boussinesq-Green-Naghdi rotational water wave theory, Coastal Engrg., 73 (2013), 13-27.
doi: 10.1016/j.coastaleng.2012.09.005.![]() ![]() |