[1]
|
M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, Dover, New York, 1972.
|
[2]
|
J. C. Butcher, Numerical Methods for Ordinary Differential Equations, John Wiley, Chichester, UK, Ltd, 2008.
doi: 10.1002/9780470753767.
|
[3]
|
R. L. Burden and J. D. Faires, Numerical Analysis, 7th ed., Higher Education Press/Cengage Learning, Inc, 2001. Available from: https://www.scirp.org/reference/referencespapers.aspx?referenceid=696332.
|
[4]
|
R. Buckdahn, J. Li and S. Peng, Mean-field backward stochastic differential equations and related partial differential equations, Stochastic Process. Appl., 119 (2009), 3133-3154.
doi: 10.1016/j.spa.2009.05.002.
|
[5]
|
F. Delarue and S. Menozzi, An interpolated stochastic algorithm for quasi-linear pdes, Math. Comput., 77 (2008), 125-158.
doi: 10.1090/S0025-5718-07-02008-X.
|
[6]
|
A. Fahim, N. Touzi and X. Warin, A probabilistic numerical method for fully nonlinear parabolic PDEs, Ann. Appl. Probab., 21 (2011), 1322-1364.
doi: 10.1214/10-AAP723.
|
[7]
|
Y. Fu, W. Zhao and T. Zhou, Multistep schemes for forward backward stochastic differential equations with jumps, J. Sci. Comput., 69 (2016), 651-672.
doi: 10.1007/s10915-016-0212-y.
|
[8]
|
E. Gobet and C. Labart, Error expansion for the discretization of backward stochastic differential equations, Stochastic Process. Appl., 117 (2007), 803-829.
doi: 10.1016/j.spa.2006.10.007.
|
[9]
|
S. Hamadene and J. P. Lepeltier, Zero-sum stochastic differential games and backward equations, Systems Control Lett., 24 (1995), 259-263.
doi: 10.1016/0167-6911(94)00011-J.
|
[10]
|
Y. Hu and S. Peng, Solution of forward-backward stochastic differential equations, Probab. Theory Related Fields, 103 (1995), 273-283.
doi: 10.1007/BF01204218.
|
[11]
|
I. Kharroubi, N. Langrené and H. Pham, Discrete time approximation of fully nonlinear HJB equations via BSDEs with nonpositive jumps, Ann. Appl. Probab., 25 (2015), 2301-2338.
doi: 10.1214/14-AAP1049.
|
[12]
|
Y. Liu, Y. Sun and W. Zhao, A fully discrete explicit multistep scheme for solving coupled forward backward stochastic differential equations, Adv. Appl. Math. Mech., 12 (2020), 643-663.
doi: 10.4208/aamm.OA-2019-0079.
|
[13]
|
G. N. Milstein and M. V. Tretyakov, Discretization of forward-backward stochastic differential equations and related quasi-linear parabolic equations, SIAM J. Numer. Anal., 27 (2007), 24-44.
doi: 10.1093/imanum/drl019.
|
[14]
|
B. Øksendal, Stochastic Differential Equations, Springer-Verlag, Berlin, 2003.
|
[15]
|
S. Peng, Probabilistic interpretation for systems of quasilinear parabolic partial differential equations, Stochastics Stochastics Rep., 37 (1991), 61-74.
doi: 10.1080/17442509108833727.
|
[16]
|
S. Peng, A general stochastic maximum principle for optimal control problems, SIAM J. Control Optim., 28 (1990), 966-979.
doi: 10.1137/0328054.
|
[17]
|
S. Peng, A linear approximation algorithm using BSDE, Pacific Economic Review, 4 (1999), 285-292.
doi: 10.1111/1468-0106.00079.
|
[18]
|
E. Pardoux and S. Tang, Forward-backward stochastic differential equations and quasilinear parabolic PDEs, Probab. Theory Related Fields, 114 (1999), 123-150.
doi: 10.1007/s004409970001.
|
[19]
|
S. Peng and Z. Wu, Fully coupled forward-backward stochastic differential equations and applications to optimal control, SIAM J. Control Optim., 37 (1999), 825-843.
doi: 10.1137/S0363012996313549.
|
[20]
|
E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation, Systems Control Lett., 14 (1990), 55-61.
doi: 10.1016/0167-6911(90)90082-6.
|
[21]
|
Y. Sun and W. Zhao, An explicit second-order numerical scheme for mean-field forward backward stochastic differential equations, Numer. Algorithms, 84 (2020), 253-283.
doi: 10.1007/s11075-019-00754-2.
|
[22]
|
Y. Sun, W. Zhao and T. Zhou, Explicit $\theta$-scheme for solving mean-field backward stochastic differential equations, SIAM J. Numer. Anal., 56 (2018), 2672-2697.
doi: 10.1137/17M1161944.
|
[23]
|
J. Yang, W. Zhao and T. Zhou, Explicit deferred correction methods for second-order forward backward stochastic differential equations, J. Sci. Comput., 79 (2019), 1409-1432.
doi: 10.1007/s10915-018-00896-w.
|
[24]
|
W. Zhao, L. Chen and S. Peng, A new kind of accurate numerical method for backward stochastic differential equations, SIAM J. Sci. Comput., 28 (2006), 1563-1581.
doi: 10.1137/05063341X.
|
[25]
|
W. Zhao, Y. Fu and T. Zhou, New kinds of high-order multistep schemes for coupled forward backward stochastic differential equations, SIAM J. Sci. Comput., 36 (2014), 1731-1751.
doi: 10.1137/130941274.
|
[26]
|
W. Zhao, Y. Li and Y. Fu, Second-order schemes for solving decoupled forward backward stochastic differential equations, Sci. China Math., 57 (2014), 665-686.
doi: 10.1007/s11425-013-4764-0.
|
[27]
|
W. Zhao, J. Wang and S. Peng, Error estimates of the $\theta$-scheme for backward stochastic differential equations, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 905-924.
doi: 10.3934/dcdsb.2009.12.905.
|
[28]
|
W. Zhao, W. Zhang and L. Ju, A numerical method and its error estimates for the decoupled forward-backward stochastic differential equations, Commun. Comput. Phys., 15 (2014), 618-646.
doi: 10.4208/cicp.280113.190813a.
|
[29]
|
W. Zhao, T. Zhou and T. Kong, High order numerical schemes for second-order FBSDEs with applications to stochastic optimal control, Commun. Comput. Phys., 21 (2015), 808-834.
|