\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Application of aggregation of variables methods to a class of two-time reaction-diffusion-chemotaxis models of spatially structured populations with constant diffusion

  • * Corresponding author: anouarelharrak1@gmail.com

    * Corresponding author: anouarelharrak1@gmail.com 
Abstract Full Text(HTML) Figure(3) Related Papers Cited by
  • The main goal of this paper is to adapt a class of complexity reduction methods called aggregation of variables methods to the construction of reduced models of two-time reaction-diffusion-chemotaxis models of spatially structured populations and to provide an error bound of the approximate dynamics. Aggregation of variables methods are general techniques that allow reducing the dimension of a mathematical dynamical system. Here we reduce a system of Partial Differential Equations to a simpler Ordinary Differential Equation system, provided that the evolution processes occur at two different time scales: a slow one for the demography and a fast one for migrations and chemotaxis, with a ratio $ \varepsilon>0 $ small enough. We give an approximation of the error between solutions of both original and reduced model for a generic function representing the demography. Finally, we provide an optimization of the error bound and validate numerically this result for a spatial inter-specific model with constant diffusion and population growth given by a logistic law in population dynamics.

    Mathematics Subject Classification: Primary: 37M99, 37N25; Secondary: 35K55.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Plot of the numerical solution of the perturbed problem (11), (A) and (C), and its approximate solution using aggregation of variables methods, (B) and (D), at two times $ t = 0.2 $ and $ t = 25 $ for $ \varepsilon = 1e-1 $

    Figure 2.  Plot of total population of the global model and its approximate solution using aggregation of variables methods for for $ \varepsilon = 1e-1 $. $ K_T: = \int_{\Omega}K(x)dx $ stands for the total carrying capacity of the environment and $ K^\ast $ for the new homogeneous one

    Figure 3.  Plot of errors, $ |N_{\varepsilon}(t)-N(t)| $, (A), and $ {\Vert n_{\varepsilon}(.,t)-\lambda(.)N(t) \Vert_\infty} $ with $ t\geq 1 $, (B), with respect to time $ t $ for different values of $ \varepsilon $; $ \varepsilon = 1e-1 $, $ \varepsilon = 1e-2 $, $ \varepsilon = 1e-3 $, and $ \varepsilon = 1e-4 $

  • [1] W. Arendt, A. Grabosch, G. Greiner, U, MoustakasRainer, N. Schlotterbeck, U. Groh, H. P. Lotz and F. Neubrander, One-Parameter Semigroups of Positive Operators, Lecture Notes in Mathematics, Springer, 2006. doi: 10.1007/BFb0074922.
    [2] P. Auger and R. Bravo de la Parra, Methods of aggregation of variables in population dynamics Méthodes d'agrégation de variables en dynamique de population, C. R. Acad. Sci. Paris Sér. Ⅲ Sci. Vie, 323 (2000), 665 – 674. doi: 10.1016/S0764-4469(00)00182-7.
    [3] P. Auger and J.-C. Poggiale, Aggregation and emergence in systems of ordinary differential equations, Math. Comput. Modelling, 27 (1998), 1-21.  doi: 10.1016/S0895-7177(98)00002-8.
    [4] P. Auger, R. Bravo de la Parra, J.-C. Poggiale, E. Sánchez and T. Nguyen-Huu, Aggregation of variables and applications to population dynamics, Lect. Notes Math., Springer Berlin Heidelberg, (2008), 209–263. doi: 10.1007/978-3-540-78273-5_5.
    [5] P. M. Auger and R. Roussarie, Complex ecological models with simple dynamics: From individuals to populations, Acta Biotheor., 42 (1994), 111-136.  doi: 10.1007/BF00709485.
    [6] T. BrochierP. AugerD. ThiaoA. BahS. LyT. Nguyen-Huu and P. Brehmer, Can overexploited fisheries recover by self-organization? reallocation of fishing effort as an emergent form of governance, Mar. Policy, 95 (2018), 46-56.  doi: 10.1016/j.marpol.2018.06.009.
    [7] M. Eisenbach, Chemotaxis, World Scientific Publishing Company, 2004.
    [8] R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, Handb. Numer. Anal., North-Holland, Amsterdam, VII (2000), 713–1020. doi: 10.1086/phos.67.4.188705.
    [9] S. D. FretwellPopulations in a Seasonal Environment, Princeton University Press, 1972. 
    [10] M. F. Goy, M. S. Springer and G. L. Hazelbauer, Taxis and behaviour, elementary sensory systems in biology, in Receptors and Recognition, Ser. B, Chapman and Hall London, 5 (1978), 1–34.
    [11] W. Gurney and  R. M. NisbetEcological Dynamics, Oxford University Press, 1998. 
    [12] E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theoret. Biol., 30 (1971), 225-234.  doi: 10.1016/0022-5193(71)90050-6.
    [13] X. Mora, Semilinear parabolic problems define semiflows on $ {C}^k $ spaces, Trans. Amer. Math. Soc., 278 (1983), 21-55.  doi: 10.2307/1999300.
    [14] K. W. Morton and E. Sūli, Finite volume methods and their analysis, IMA J. Numer. Anal., 11 (1991), 241-260.  doi: 10.1093/imanum/11.2.241.
    [15] V. N. MoseT. Nguyen-HuuP. Auger and D. Western, Modelling herbivore population dynamics in the amboseli national park, kenya: Application of spatial aggregation of variables to derive a master model, Ecol. Complex., 10 (2012), 42-51.  doi: 10.1016/j.ecocom.2012.02.002.
    [16] A. MoussaouiM. BensenaneP. Auger and A. Bah, On the optimal size and number of reserves in a multi-site fishery model. journal of biological systems, J. Biol. Systems, 23 (2015), 31-47.  doi: 10.1142/S0218339015500023.
    [17] J. D. Murray, Mathematical Biology, Springer-Verlag, Berlin, 1989. doi: 10.1007/978-3-662-08539-4.
    [18] T. H. NguyenT. BrochierP. AugerV. D. Trinh and P. Brehmer, Competition or cooperation in transboundary fish stocks management: Insight from a dynamical model, J. Theoret. Biol., 447 (2018), 1-11.  doi: 10.1016/j.jtbi.2018.03.017.
    [19] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.
    [20] E. SánchezP. Auger and J. C. Poggiale, Two-time scales in spatially structured models of population dynamics: A semigroup approach, J. Math. Anal. Appl., 375 (2011), 149-165.  doi: 10.1016/j.jmaa.2010.08.014.
    [21] E. SánchezO. ArinoP. Auger and R. Bravo de la Parra, A singular perturbation in an age-structured population model, SIAM J. Appl. Math., 60 (2000), 408-436.  doi: 10.1137/S0036139998337966.
    [22] E. SánchezR. Bravo de la ParraP. Auger and P. Gómez-Mourelo, Time scales in linear delayed differential equations, J. Math. Anal. Appl., 323 (2006), 680-699.  doi: 10.1016/j.jmaa.2005.10.074.
    [23] D. Tilman and  P. KareivaSpatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions (MPB-30), Princeton University Press, 1997.  doi: 10.1515/9780691188362.
    [24] R. Vilsmeier, F. Benkhaldoun and D. Hänel, Finite Volumes for Complex Applications II, Hermes Science Publications, Paris, 1999.
  • 加载中

Figures(3)

SHARE

Article Metrics

HTML views(431) PDF downloads(311) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return