doi: 10.3934/dcdss.2021068
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Controllability of Sobolev type fuzzy differential equation with non-instantaneous impulsive condition

School of Basic Sciences, Indian Institute of Technology Mandi, Kamand (H.P.) - 175005, India

* Corresponding author: Muslim Malik

Received  August 2020 Revised  March 2021 Early access June 2021

In this manuscript, we investigate the existence, uniqueness and controllability results of a Sobolev type fuzzy differential equation with non-instantaneous impulsive conditions. Non-linear functional analysis, Banach fixed point theorem and fuzzy theory are the main techniques used to establish these results. In support, an example is given to validate the obtained analytical findings.

Citation: Muslim Malik, Anjali Rose, Anil Kumar. Controllability of Sobolev type fuzzy differential equation with non-instantaneous impulsive condition. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2021068
References:
[1]

S. Agarwal and D. Bahuguna, Existence of solutions to Sobolev-type partial neutral differential equations, International Journal of Stochastic Analysis, 163 (2006), 1-10.  doi: 10.1155/JAMSA/2006/16308.  Google Scholar

[2]

R. P. AgarwalD. BaleanuJ. J. NietoD. F. Torres and Y. Zhou, A survey on fuzzy fractional differential and optimal control nonlocal evolution equations, Journal of Computational and Applied Mathematics, 339 (2018), 3-29.  doi: 10.1016/j.cam.2017.09.039.  Google Scholar

[3]

N. U. AhmedK. L. Teo and S. H. Hou, Nonlinear impulsive systems on infinite dimensional spaces, Nonlinear Analysis, 54 (2003), 907-925.  doi: 10.1016/S0362-546X(03)00117-2.  Google Scholar

[4]

S. Arora, M. T. Mohan and J. Dabas, Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces, Mathematical Control and Related Fields, (2020). doi: 10.3934/mcrf. 2020049.  Google Scholar

[5]

G. Arthi and K. Balachandran, Controllability of second order impulsive evolution systems with infinite delay, Nonlinear Analysis: Hybrid Systems, 11 (2014), 139-153.  doi: 10.1016/j.nahs.2013.08.001.  Google Scholar

[6]

K. BalachandranS. Kiruthika and J. J. Trujillo, On fractional impulsive equations of Sobolev type with nonlocal condition in Banach spaces, Computers and Mathematics with Applications, 62 (2011), 1157-1165.  doi: 10.1016/j.camwa.2011.03.031.  Google Scholar

[7]

K. Balachandran and J. Y. Park, Sobolev type integrodifferential equation with nonlocal condition in Banach spaces, Taiwanese Journal of Mathematics, 7 (2003), 155-163.  doi: 10.11650/twjm/1500407525.  Google Scholar

[8]

K. Balachandran and J. P. Dauer, Controllability of functional differential systems of Sobolev type in Banach spaces, Kybernetika, 34 (1998), 349-357.   Google Scholar

[9]

P. Balasubramaniam and S. Muralisankar, Existence and uniqueness of a fuzzy solution for nonlinear neutral functional differential equiations, Computers and Mathematics with Applications, 42 (2001), 961-967.  doi: 10.1016/S0898-1221(01)00212-7.  Google Scholar

[10]

P. Balasubramaniam and S. Muralisankar, Existence and uniqueness of fuzzy solution for semilinear fuzzy integrodifferential equations with nonlocal conditions, Computers and Mathematics with Applications, 47 (2004), 1115-1122.  doi: 10.1016/S0898-1221(04)90091-0.  Google Scholar

[11]

B. Bede and S. G. Gal, Generalizations of the differentiability of fuzzy number-valued functions with applications to fuzzy differential equations, Fuzzy Sets and System, 151 (2005), 581-599.  doi: 10.1016/j.fss.2004.08.001.  Google Scholar

[12]

A. Bencsik, B. Bede, J. Tar and J. Fodor, Fuzzy differential equations in modeling hydraulic differential servo cylinders, in Third Romanian-Hungarian Joint Symposium on Applied Computational Intelligence (SACI), Timisoara, Romania, (2006). Google Scholar

[13]

A. Boudaoui and A. Slama, Existence and controllability results for Sobolev-type fractional impulsive stochastic differential equations with infinite delay, Journal of Mathematics and Applications, 40 (2017), 37-58.  doi: 10.7862/rf.2017.3.  Google Scholar

[14]

J. Casasnovas and F. Rossell, Averaging fuzzy biopolymers, Fuzzy Sets and Systems, 152 (2005), 139-158.  doi: 10.1016/j.fss.2004.10.019.  Google Scholar

[15]

P. Diamond and P. E. Kloeden, Metric spaces of fuzzy sets: Theory and applications, World Scientific, (1994). doi: 10.1142/2326.  Google Scholar

[16]

D. Dubois and H. Prade, Towards fuzzy differential calculus part 1: Integration of fuzzy mappings, Fuzzy Sets and System, 8 (1982), 1-7.  doi: 10.1016/0165-0114(82)90025-2.  Google Scholar

[17]

D. Dubois and H. Prade, Towards fuzzy differential calculus part 2: Integration on fuzzy intervals, Fuzzy Sets and System, 8 (1982), 105-116.  doi: 10.1016/0165-0114(82)90001-X.  Google Scholar

[18]

M. GuoX. Xue and R. Li, Impulsive functional differential inclusions and fuzzy population models, Fuzzy Sets and Systems, 138 (2003), 601-615.  doi: 10.1016/S0165-0114(02)00522-5.  Google Scholar

[19]

J. H. JeongJ. S. KimH. E. Youm and J. H. Park, Exact controllability for fuzzy differential equations using extremal solutions, Journal of Computational Analysis and Applications, 23 (2017), 1056-1069.   Google Scholar

[20]

A. Kandel and W. J. Byatt, Fuzzy differential equations, Proceedings of the International Conference on Cybernetics and Society, Tokyo, Japan, 1 (1978), 1213-1216.   Google Scholar

[21]

M. Kumar and S. Kumar, Controllability of impulsive second order semilinear fuzzy integrodifferential control systems with nonlocal initial conditions, Applied Soft Computing, 39 (2016), 251-265.  doi: 10.1016/j.asoc.2015.10.006.  Google Scholar

[22]

S. Kumar and R. Sakthivel, Constrained controllability of second order retarded nonlinear systems with nonlocal condition, IMA Journal of Mathematical Control and Information, 37 (2020), 441-454.  doi: 10.1093/imamci/dnz007.  Google Scholar

[23]

Y. KwunJ. KimM. Park and J. Park, Nonlocal controllability for the semilinear fuzzy integrodifferential equations in n-dimensional fuzzy vector space, Advances in Difference Equations, 2009 (2009), 1-6.  doi: 10.1155/2009/734090.  Google Scholar

[24]

Y. KwunJ. KimM. Park and J. Park, Controllability for the impulsive semilinear nonlocal fuzzy integrodifferential equations in n-dimensional fuzzy vector spacey, Advances in Difference Equations, 2010 (2010), 1-22.  doi: 10.1186/1687-1847-2010-983483.  Google Scholar

[25]

B. Liu, A survey of credibility theory, Fuzzy Optimization and Decision Making, 5 (2006), 387-408.  doi: 10.1007/s10700-006-0016-x.  Google Scholar

[26]

M. MalikR. DhayalS. Abbas and A. Kumar, Controllability of non-autonomous nonlinear differential system with non-instantaneous impulses, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales, Serie A, Matemáticas, 113 (2019), 103-118.  doi: 10.1007/s13398-017-0454-z.  Google Scholar

[27]

A. Meraj and D. N. Pandey, Approximate controllability of nonlocal non-autonomous Sobolev type evolution equations, An International Journal of Optimization and Control: Theories and Applications (IJOCTA), 9 (2019), 86-94.  doi: 10.11121/ijocta.01.2019.00644.  Google Scholar

[28]

A. Meraj and D. N. Pandey, Approximate controllability of non-autonomous Sobolev type integro-differential equations having nonlocal and non-instantaneous impulsive conditions, Indian Journal of Pure and Applied Mathematics, 51 (2020), 501-518.  doi: 10.1007/s13226-020-0413-9.  Google Scholar

[29]

M. Mizumoto and K. Tanaka, Some Properties of Fuzzy Numbers, North-Holland, 1979.  Google Scholar

[30]

M. MuslimA. Kumar and R. Sakthivel, Exact and trajectory controllability of second order evolution systems with impulses and deviated arguments, Mathematical Methods in the Applied Sciences, 41 (2018), 4259-4272.  doi: 10.1002/mma.4888.  Google Scholar

[31]

M. Muslim and R. P. Agarwal, Exact controllability of an integro-differential equation with deviated argument, Functional Differential Equations, 21 (2014), 31-45.   Google Scholar

[32]

J. H. ParkJ. S. ParkY. C. Ahn and Y. C. Kwun, Controllability for the impulsive semilinear fuzzy integrodifferential equations, Springer, 40 (2007), 704-713.  doi: 10.1007/978-3-540-71441-5_76.  Google Scholar

[33]

J. H. Park, J. S. Park and Y. C. Kwun, Controllability for the semilinear fuzzy integrodifferential equations with nonlocal conditions, in International Conference on Fuzzy Systems and Knowledge Discovery, Springer, Berlin, Heidelberg, (2006), 221-230. doi: 10.1007/11881599_25.  Google Scholar

[34]

G. ShenR. SakthivelY. Ren and M. Li, Controllability and stability of fractional stochastic functional systems driven by Rosenblatt process, Collectanea Mathematica, 71 (2020), 63-82.  doi: 10.1007/s13348-019-00248-3.  Google Scholar

[35]

R. E. Showalter, Existence and representation theorems for a semilinear Sobolev equation in Banach space, SIAM Journal on Mathematical Analysis, 3 (1972), 527-543.  doi: 10.1137/0503051.  Google Scholar

[36]

J. WangM. Feckan and A. Debbouche, Time optimal control of a system governed by non-instantaneous impulsive differential equations, Journal of Optimization Theory and Applications, 182 (2019), 573-587.  doi: 10.1007/s10957-018-1313-6.  Google Scholar

[37]

L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.  doi: 10.1016/S0019-9958(65)90241-X.  Google Scholar

[38]

H. J. Zimmermann, Fuzzy set theory and its applications, Springer Science and Business Media, (2011). doi: 10.1007/978-94-010-0646-0.  Google Scholar

show all references

References:
[1]

S. Agarwal and D. Bahuguna, Existence of solutions to Sobolev-type partial neutral differential equations, International Journal of Stochastic Analysis, 163 (2006), 1-10.  doi: 10.1155/JAMSA/2006/16308.  Google Scholar

[2]

R. P. AgarwalD. BaleanuJ. J. NietoD. F. Torres and Y. Zhou, A survey on fuzzy fractional differential and optimal control nonlocal evolution equations, Journal of Computational and Applied Mathematics, 339 (2018), 3-29.  doi: 10.1016/j.cam.2017.09.039.  Google Scholar

[3]

N. U. AhmedK. L. Teo and S. H. Hou, Nonlinear impulsive systems on infinite dimensional spaces, Nonlinear Analysis, 54 (2003), 907-925.  doi: 10.1016/S0362-546X(03)00117-2.  Google Scholar

[4]

S. Arora, M. T. Mohan and J. Dabas, Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces, Mathematical Control and Related Fields, (2020). doi: 10.3934/mcrf. 2020049.  Google Scholar

[5]

G. Arthi and K. Balachandran, Controllability of second order impulsive evolution systems with infinite delay, Nonlinear Analysis: Hybrid Systems, 11 (2014), 139-153.  doi: 10.1016/j.nahs.2013.08.001.  Google Scholar

[6]

K. BalachandranS. Kiruthika and J. J. Trujillo, On fractional impulsive equations of Sobolev type with nonlocal condition in Banach spaces, Computers and Mathematics with Applications, 62 (2011), 1157-1165.  doi: 10.1016/j.camwa.2011.03.031.  Google Scholar

[7]

K. Balachandran and J. Y. Park, Sobolev type integrodifferential equation with nonlocal condition in Banach spaces, Taiwanese Journal of Mathematics, 7 (2003), 155-163.  doi: 10.11650/twjm/1500407525.  Google Scholar

[8]

K. Balachandran and J. P. Dauer, Controllability of functional differential systems of Sobolev type in Banach spaces, Kybernetika, 34 (1998), 349-357.   Google Scholar

[9]

P. Balasubramaniam and S. Muralisankar, Existence and uniqueness of a fuzzy solution for nonlinear neutral functional differential equiations, Computers and Mathematics with Applications, 42 (2001), 961-967.  doi: 10.1016/S0898-1221(01)00212-7.  Google Scholar

[10]

P. Balasubramaniam and S. Muralisankar, Existence and uniqueness of fuzzy solution for semilinear fuzzy integrodifferential equations with nonlocal conditions, Computers and Mathematics with Applications, 47 (2004), 1115-1122.  doi: 10.1016/S0898-1221(04)90091-0.  Google Scholar

[11]

B. Bede and S. G. Gal, Generalizations of the differentiability of fuzzy number-valued functions with applications to fuzzy differential equations, Fuzzy Sets and System, 151 (2005), 581-599.  doi: 10.1016/j.fss.2004.08.001.  Google Scholar

[12]

A. Bencsik, B. Bede, J. Tar and J. Fodor, Fuzzy differential equations in modeling hydraulic differential servo cylinders, in Third Romanian-Hungarian Joint Symposium on Applied Computational Intelligence (SACI), Timisoara, Romania, (2006). Google Scholar

[13]

A. Boudaoui and A. Slama, Existence and controllability results for Sobolev-type fractional impulsive stochastic differential equations with infinite delay, Journal of Mathematics and Applications, 40 (2017), 37-58.  doi: 10.7862/rf.2017.3.  Google Scholar

[14]

J. Casasnovas and F. Rossell, Averaging fuzzy biopolymers, Fuzzy Sets and Systems, 152 (2005), 139-158.  doi: 10.1016/j.fss.2004.10.019.  Google Scholar

[15]

P. Diamond and P. E. Kloeden, Metric spaces of fuzzy sets: Theory and applications, World Scientific, (1994). doi: 10.1142/2326.  Google Scholar

[16]

D. Dubois and H. Prade, Towards fuzzy differential calculus part 1: Integration of fuzzy mappings, Fuzzy Sets and System, 8 (1982), 1-7.  doi: 10.1016/0165-0114(82)90025-2.  Google Scholar

[17]

D. Dubois and H. Prade, Towards fuzzy differential calculus part 2: Integration on fuzzy intervals, Fuzzy Sets and System, 8 (1982), 105-116.  doi: 10.1016/0165-0114(82)90001-X.  Google Scholar

[18]

M. GuoX. Xue and R. Li, Impulsive functional differential inclusions and fuzzy population models, Fuzzy Sets and Systems, 138 (2003), 601-615.  doi: 10.1016/S0165-0114(02)00522-5.  Google Scholar

[19]

J. H. JeongJ. S. KimH. E. Youm and J. H. Park, Exact controllability for fuzzy differential equations using extremal solutions, Journal of Computational Analysis and Applications, 23 (2017), 1056-1069.   Google Scholar

[20]

A. Kandel and W. J. Byatt, Fuzzy differential equations, Proceedings of the International Conference on Cybernetics and Society, Tokyo, Japan, 1 (1978), 1213-1216.   Google Scholar

[21]

M. Kumar and S. Kumar, Controllability of impulsive second order semilinear fuzzy integrodifferential control systems with nonlocal initial conditions, Applied Soft Computing, 39 (2016), 251-265.  doi: 10.1016/j.asoc.2015.10.006.  Google Scholar

[22]

S. Kumar and R. Sakthivel, Constrained controllability of second order retarded nonlinear systems with nonlocal condition, IMA Journal of Mathematical Control and Information, 37 (2020), 441-454.  doi: 10.1093/imamci/dnz007.  Google Scholar

[23]

Y. KwunJ. KimM. Park and J. Park, Nonlocal controllability for the semilinear fuzzy integrodifferential equations in n-dimensional fuzzy vector space, Advances in Difference Equations, 2009 (2009), 1-6.  doi: 10.1155/2009/734090.  Google Scholar

[24]

Y. KwunJ. KimM. Park and J. Park, Controllability for the impulsive semilinear nonlocal fuzzy integrodifferential equations in n-dimensional fuzzy vector spacey, Advances in Difference Equations, 2010 (2010), 1-22.  doi: 10.1186/1687-1847-2010-983483.  Google Scholar

[25]

B. Liu, A survey of credibility theory, Fuzzy Optimization and Decision Making, 5 (2006), 387-408.  doi: 10.1007/s10700-006-0016-x.  Google Scholar

[26]

M. MalikR. DhayalS. Abbas and A. Kumar, Controllability of non-autonomous nonlinear differential system with non-instantaneous impulses, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales, Serie A, Matemáticas, 113 (2019), 103-118.  doi: 10.1007/s13398-017-0454-z.  Google Scholar

[27]

A. Meraj and D. N. Pandey, Approximate controllability of nonlocal non-autonomous Sobolev type evolution equations, An International Journal of Optimization and Control: Theories and Applications (IJOCTA), 9 (2019), 86-94.  doi: 10.11121/ijocta.01.2019.00644.  Google Scholar

[28]

A. Meraj and D. N. Pandey, Approximate controllability of non-autonomous Sobolev type integro-differential equations having nonlocal and non-instantaneous impulsive conditions, Indian Journal of Pure and Applied Mathematics, 51 (2020), 501-518.  doi: 10.1007/s13226-020-0413-9.  Google Scholar

[29]

M. Mizumoto and K. Tanaka, Some Properties of Fuzzy Numbers, North-Holland, 1979.  Google Scholar

[30]

M. MuslimA. Kumar and R. Sakthivel, Exact and trajectory controllability of second order evolution systems with impulses and deviated arguments, Mathematical Methods in the Applied Sciences, 41 (2018), 4259-4272.  doi: 10.1002/mma.4888.  Google Scholar

[31]

M. Muslim and R. P. Agarwal, Exact controllability of an integro-differential equation with deviated argument, Functional Differential Equations, 21 (2014), 31-45.   Google Scholar

[32]

J. H. ParkJ. S. ParkY. C. Ahn and Y. C. Kwun, Controllability for the impulsive semilinear fuzzy integrodifferential equations, Springer, 40 (2007), 704-713.  doi: 10.1007/978-3-540-71441-5_76.  Google Scholar

[33]

J. H. Park, J. S. Park and Y. C. Kwun, Controllability for the semilinear fuzzy integrodifferential equations with nonlocal conditions, in International Conference on Fuzzy Systems and Knowledge Discovery, Springer, Berlin, Heidelberg, (2006), 221-230. doi: 10.1007/11881599_25.  Google Scholar

[34]

G. ShenR. SakthivelY. Ren and M. Li, Controllability and stability of fractional stochastic functional systems driven by Rosenblatt process, Collectanea Mathematica, 71 (2020), 63-82.  doi: 10.1007/s13348-019-00248-3.  Google Scholar

[35]

R. E. Showalter, Existence and representation theorems for a semilinear Sobolev equation in Banach space, SIAM Journal on Mathematical Analysis, 3 (1972), 527-543.  doi: 10.1137/0503051.  Google Scholar

[36]

J. WangM. Feckan and A. Debbouche, Time optimal control of a system governed by non-instantaneous impulsive differential equations, Journal of Optimization Theory and Applications, 182 (2019), 573-587.  doi: 10.1007/s10957-018-1313-6.  Google Scholar

[37]

L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.  doi: 10.1016/S0019-9958(65)90241-X.  Google Scholar

[38]

H. J. Zimmermann, Fuzzy set theory and its applications, Springer Science and Business Media, (2011). doi: 10.1007/978-94-010-0646-0.  Google Scholar

[1]

Liang Bai, Juan J. Nieto, José M. Uzal. On a delayed epidemic model with non-instantaneous impulses. Communications on Pure & Applied Analysis, 2020, 19 (4) : 1915-1930. doi: 10.3934/cpaa.2020084

[2]

Ahmed Boudaoui, Tomás Caraballo, Abdelghani Ouahab. Stochastic differential equations with non-instantaneous impulses driven by a fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2521-2541. doi: 10.3934/dcdsb.2017084

[3]

Xingyue Liang, Jianwei Xia, Guoliang Chen, Huasheng Zhang, Zhen Wang. $ \mathcal{H}_{\infty} $ control for fuzzy markovian jump systems based on sampled-data control method. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1329-1343. doi: 10.3934/dcdss.2020368

[4]

Baskar Sundaravadivoo. Controllability analysis of nonlinear fractional order differential systems with state delay and non-instantaneous impulsive effects. Discrete & Continuous Dynamical Systems - S, 2020, 13 (9) : 2561-2573. doi: 10.3934/dcdss.2020138

[5]

Luisa Malaguti, Stefania Perrotta, Valentina Taddei. $ L^p $-exact controllability of partial differential equations with nonlocal terms. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021053

[6]

Magdalena Foryś-Krawiec, Jiří Kupka, Piotr Oprocha, Xueting Tian. On entropy of $ \Phi $-irregular and $ \Phi $-level sets in maps with the shadowing property. Discrete & Continuous Dynamical Systems, 2021, 41 (3) : 1271-1296. doi: 10.3934/dcds.2020317

[7]

Thomas French. Follower, predecessor, and extender set sequences of $ \beta $-shifts. Discrete & Continuous Dynamical Systems, 2019, 39 (8) : 4331-4344. doi: 10.3934/dcds.2019175

[8]

Melvin Faierman. Fredholm theory for an elliptic differential operator defined on $ \mathbb{R}^n $ and acting on generalized Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1463-1483. doi: 10.3934/cpaa.2020074

[9]

Siqi Chen, Yong-Kui Chang, Yanyan Wei. Pseudo $ S $-asymptotically Bloch type periodic solutions to a damped evolution equation. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021017

[10]

Nicholas J. Kass, Mohammad A. Rammaha. Local and global existence of solutions to a strongly damped wave equation of the $ p $-Laplacian type. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1449-1478. doi: 10.3934/cpaa.2018070

[11]

Abdeladim El Akri, Lahcen Maniar. Uniform indirect boundary controllability of semi-discrete $ 1 $-$ d $ coupled wave equations. Mathematical Control & Related Fields, 2020, 10 (4) : 669-698. doi: 10.3934/mcrf.2020015

[12]

Pablo Amster, Alberto Déboli, Manuel Pinto. Hartman and Nirenberg type results for systems of delay differential equations under $ (\omega,Q) $-periodic conditions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021171

[13]

Cuilian You, Yangyang Hao. Stability in mean for fuzzy differential equation. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1375-1385. doi: 10.3934/jimo.2018099

[14]

Teresa Alberico, Costantino Capozzoli, Luigi D'Onofrio, Roberta Schiattarella. $G$-convergence for non-divergence elliptic operators with VMO coefficients in $\mathbb R^3$. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 129-137. doi: 10.3934/dcdss.2019009

[15]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

[16]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[17]

Brahim Alouini. Asymptotic behaviour of the solutions for a weakly damped anisotropic sixth-order Schrödinger type equation in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021032

[18]

Alar Leibak. On the number of factorizations of $ t $ mod $ N $ and the probability distribution of Diffie-Hellman secret keys for many users. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021029

[19]

Brahim Boufoussi, Soufiane Mouchtabih. Controllability of neutral stochastic functional integro-differential equations driven by fractional brownian motion with Hurst parameter lesser than $ 1/2 $. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020096

[20]

Yong Zhou, Jia Wei He. New results on controllability of fractional evolution systems with order $ \alpha\in (1,2) $. Evolution Equations & Control Theory, 2021, 10 (3) : 491-509. doi: 10.3934/eect.2020077

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (112)
  • HTML views (244)
  • Cited by (0)

Other articles
by authors

[Back to Top]