[1]
|
R. E. Alcouffe, A first Collision Source Method for Coupling Monte Carlo and Discrete Ordinates for Localized Source Problems, in Monte-Carlo Methods and Applications in Neutronics, Photonics and Statistical Physics, Springer, 1985,352–366.
|
[2]
|
J.-F. Bourgat, P. Le Tallec and M. Tidriri, Coupling boltzmann and Navier–Stokes equations by friction, Journal of Computational Physics, 127 (1996), 227-245.
doi: 10.1006/jcph.1996.0172.
|
[3]
|
T. J. M. Boyd and J. J. Sanderson, The Physics of Plasmas, Cambridge University Press, 2003.
doi: 10.1017/CBO9780511755750.
|
[4]
|
S. Brunner, E. Valeo and J. A. Krommes, Collisional delta-f scheme with evolving background for transport time scale simulations, Physics of Plasmas, 6 (1999), 4504-4521.
doi: 10.1063/1.873738.
|
[5]
|
R. H. Byrd, P. Lu, J. Nocedal and C. Zhu, A limited memory algorithm for bound constrained optimization, SIAM Journal on Scientific Computing, 16 (1995), 1190-1208.
doi: 10.1137/0916069.
|
[6]
|
K. M. Case and P. F. Zweifel, Linear Transport Theory, Addison-Wesley, 1967.
|
[7]
|
C. Cercignani, The Boltzmann Equation and its Applications, Applied Mathematical Sciences, 67, Springer-Verlag, New York, 1988.
doi: 10.1007/978-1-4612-1039-9.
|
[8]
|
C. Cercignani, The Boltzmann equation in the whole space, in The Boltzmann Equation and Its Applications, Springer, 1988, 40–103.
doi: 10.1007/978-1-4612-1039-9.
|
[9]
|
C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Applied Mathematical Sciences, 106, Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4419-8524-8.
|
[10]
|
S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases, Cambridge university press, 1970.
|
[11]
|
Z. Chen and C. Hauck, Multiscale convergence properties for spectral approximations of a model kinetic equation, Mathematics of Computation, 88 (2019), 2257-2293.
doi: 10.1090/mcom/3399.
|
[12]
|
Z. Chen, L. Liu and L. Mu, Dg-imex stochastic galerkin schemes for linear transport equation with random inputs and diffusive scalings, Journal of Scientific Computing, 73 (2017), 566-592.
doi: 10.1007/s10915-017-0439-2.
|
[13]
|
J. A. Coakley Jr. and P. Yang, Atmospheric Radiation: A Primer with Illustrative Solutions, John Wiley & Sons, 2014.
|
[14]
|
M. M. Crockatt, A. J. Christlieb, C. K. Garrett and C. D. Hauck, An arbitrary-order, fully implicit, hybrid kinetic solver for linear radiative transport using integral deferred correction, Journal of Computational Physics, 346 (2017), 212-241.
doi: 10.1016/j.jcp.2017.06.017.
|
[15]
|
G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Control Signal Systems, 2 (1989), 303-314.
doi: 10.1007/BF02551274.
|
[16]
|
R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology: Volume 1 Physical Origins and Classical Methods, Springer Science & Business Media, 2012.
|
[17]
|
B. Davison and J. B. Sykes, Neutron Transport Theory, Clarendon Press, 1957.
|
[18]
|
V. P. DeCaria, C. D. Hauck and M. P. Laiu, Analysis of a new implicit solver for a semiconductor model, preprint, arXiv: 2009.05626, (2020).
|
[19]
|
P. Degond and S. Jin, A smooth transition model between kinetic and diffusion equations, SIAM Journal on Numerical Analysis, 42 (2005), 2671-2687.
doi: 10.1137/S0036142903430414.
|
[20]
|
P. Degond, S. Jin and L. Mieussens, A smooth transition model between kinetic and hydrodynamic equations, Journal of Computational Physics, 209 (2005), 665-694.
doi: 10.1016/j.jcp.2005.03.025.
|
[21]
|
P. Degond, J.-G. Liu and L. Mieussens, Macroscopic fluid models with localized kinetic upscaling effects, Multiscale Modeling & Simulation, 5 (2006), 940-979.
doi: 10.1137/060651574.
|
[22]
|
G. Dimarco and L. Pareschi, Hybrid multiscale methods ii. Kinetic equations, Multiscale Modeling & Simulation, 6 (2008), 1169-1197.
doi: 10.1137/070680916.
|
[23]
|
G. Dimarco and L. Pareschi, Fluid solver independent hybrid methods for multiscale kinetic equations, SIAM Journal on Scientific Computing, 32 (2010), 603-634.
doi: 10.1137/080730585.
|
[24]
|
I. M. Gamba, S. Jin and L. Liu, Micro-macro decomposition based asymptotic-preserving numerical schemes and numerical moments conservation for collisional nonlinear kinetic equations, J. Comput. Phys., 382 (2019), 264-290.
doi: 10.1016/j.jcp.2019.01.018.
|
[25]
|
C. K. Garrett and C. D. Hauck, A comparison of moment closures for linear kinetic transport equations: The line source benchmark, Transport Theory and Statistical Physics, 42 (2013), 203-235.
doi: 10.1080/00411450.2014.910226.
|
[26]
|
F. Golse, S. Jin and C. D. Levermore, A domain decomposition analysis for a two-scale linear transport problem, ESAIM: Mathematical Modelling and Numerical Analysis, 37 (2003), 869-892.
doi: 10.1051/m2an:2003059.
|
[27]
|
C. Hauck and V. Heningburg, Filtered discrete ordinates equations for radiative transport, Journal of Scientific Computing, 80 (2019), 614-648.
doi: 10.1007/s10915-019-00950-1.
|
[28]
|
C. Hauck and R. McClarren, Positive p_n closures, SIAM Journal on Scientific Computing, 32 (2010), 2603-2626.
doi: 10.1137/090764918.
|
[29]
|
C. D. Hauck and R. G. McClarren, A collision-based hybrid method for time-dependent, linear, kinetic transport equations, Multiscale Modeling & Simulation, 11 (2013), 1197-1227.
doi: 10.1137/110846610.
|
[30]
|
R. D. Hazeltine and F. L. Waelbroeck, The Framework of Plasma Physics, Westview, 2004.
doi: 10.1201/9780429502804.
|
[31]
|
V. Heningburg and C. D. Hauck, Hybrid solver for the radiative transport equation using finite volume and discontinuous galerkin, preprint, arXiv: 2002.02517, (2020).
doi: 10.1137/19M1304520.
|
[32]
|
H. J. Hwang, J. W. Jang, H. Jo and J. Y. Lee, Trend to equilibrium for the kinetic Fokker-Planck equation via the neural network approach, preprint, (2019).
doi: 10.1016/j.jcp.2020.109665.
|
[33]
|
J. Jang, F. Li, J.-M. Qiu and T. Xiong, High order asymptotic preserving dg-imex schemes for discrete-velocity kinetic equations in a diffusive scaling, Journal of Computational Physics, 281 (2015), 199-224.
doi: 10.1016/j.jcp.2014.10.025.
|
[34]
|
S. Jin, Efficient asymptotic-preserving (ap) schemes for some multiscale kinetic equations, SIAM Journal on Scientific Computing, 21 (1999), 441-454.
doi: 10.1137/S1064827598334599.
|
[35]
|
S. Jin, Asymptotic preserving (ap) schemes for multiscale kinetic and hyperbolic equations: A review, Riv. Mat. Univ. Parma, 3 (2012), 177-216.
|
[36]
|
D. Kingma and J. Ba, Adam: A method for stochastic optimization, International Conference on Learning Representations, (2014).
|
[37]
|
A. Klar, Domain decomposition for kinetic problems with nonequilibrium states, Eur. J. Mech. B: Fluid, 15 (1996), 203-216.
|
[38]
|
A. Klar, H. Neunzert and J. Struckmeier, Transition from kinetic theory to macroscopic fluid equations: A problem for domain decomposition and a source for new algorithms, Transport Theory and Statistical Physics, 29 (2000), 93-106.
doi: 10.1080/00411450008205862.
|
[39]
|
H. Kurt, M. Stinchcombe and H. White, Multilayer feedforward networks are universal approximators, Neural Networks 2, (1989), 359–366.
|
[40]
|
M. P. Laiu, C. D. Hauck, R. G. McClarren, D. P. O'Leary and A. L. Tits, Positive filtered p _n moment closures for linear kinetic equations, SIAM Journal on Numerical Analysis, 54 (2016), 3214-3238.
doi: 10.1137/15M1052871.
|
[41]
|
K. D. Lathrop, Ray effects in discrete ordinates equations, Nuclear Science and Engineering, 32 (1968), 357-369.
doi: 10.13182/NSE68-4.
|
[42]
|
E. E. Lewis and W. F. Miller, Computational Methods of Neutron Transport, John Wiley and Sons, Inc., New York, NY, 1984.
|
[43]
|
T.-P. Liu and S.-H. Yu, Boltzmann equation: Micro-macro decompositions and positivity of shock profiles, Communications in Mathematical Physics, 246 (2004), 133-179.
doi: 10.1007/s00220-003-1030-2.
|
[44]
|
P. A. Markowich, C. A. Ringhofer and C. Schmeiser, Semiconductor Equations, Springer-Verlag, New York, 1990.
doi: 10.1007/978-3-7091-6961-2.
|
[45]
|
R. G. McClarren and C. D. Hauck, Robust and accurate filtered spherical harmonics expansions for radiative transfer, Journal of Computational Physics, 229 (2010), 5597-5614.
doi: 10.1016/j.jcp.2010.03.043.
|
[46]
|
W. S. McCulluoch and W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biophys., 5 (1943), 115-133.
doi: 10.1007/BF02478259.
|
[47]
|
A. Mezzacappa and O. Messer, Neutrino transport in core collapse supernovae, Journal of Computational and Applied Mathematics, 109 (1999), 281-319.
|
[48]
|
D. Mihalas and B. Weibel-Mihalas, Foundations of Radiation Hydrodynamics, Courier Corporation, 1999.
|
[49]
|
S. Parker and W. Lee, A fully nonlinear characteristic method for gyrokinetic simulation, Physics of Fluids B: Plasma Physics, 5 (1993), 77-86.
|
[50]
|
A. Peraiah, An Introduction to Radiative Transfer: Methods and Applications in Astrophysics, Cambridge University Press, 2002.
|
[51]
|
G. C. Pomraning, Radiation Hydrodynamics, Pergamon Press, New York, 1973.
doi: 10.2172/656708.
|
[52]
|
M. Raissi, P. Perdikaris and G. E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378 (2019), 686-707.
doi: 10.1016/j.jcp.2018.10.045.
|
[53]
|
M. Raissi, P. Perdikaris and G. E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378 (2019), 686-707.
doi: 10.1016/j.jcp.2018.10.045.
|
[54]
|
S. Selberherr, Analysis and Simulation of Semiconductor Devices, Springer Science & Business Media, 2012.
doi: 10.1007/978-3-7091-8752-4.
|
[55]
|
K. Stamnes, G. E. Thomas and J. J. Stamnes, Radiative Transfer in the Atmosphere and Ocean, Cambridge University Press, 2017.
doi: 10.1017/9781316148549.
|
[56]
|
A. Tartakovsky, C. Marrero, D. Tartakovsky and D. Barajas-Solano, Learning parameters and constitutive relationships with physics informed deep neural networks, preprint, arXiv: 1808.03398, (2018).
doi: 10.1016/j.jcp.2019.06.041.
|
[57]
|
W. Zdunkowski, T. Trautmann and A. Bott, Radiation in the Atmosphere: A Course in Theoretical Meteorology, Cambridge University Press, 2007.
doi: 10.1017/CBO9780511535796.
|
[58]
|
Y. Zhu, N. Zabaras, P.-S. Koutsourelakis and P. Perdikaris, Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data, J. Comput. Phys., 394 (2019), 56-81.
doi: 10.1016/j.jcp.2019.05.024.
|