[1]
|
A. I. Abbas, On a Thermoelastic Fractional Order Model, Journal of Physics, 1 (2012), 24-30.
|
[2]
|
O. P. Agrawal, A formulation and numerical scheme for fractional optimal control problems, J. Vibr. Control, 14 (2008), 1291-1299.
doi: 10.1177/1077546307087451.
|
[3]
|
I. Area, J. J. Nieto and J. Losada, A note on the fractional logistic equation, Physica A, 444 (2016), 182-187.
doi: 10.1016/j.physa.2015.10.037.
|
[4]
|
A. Atangana and A. H. Cloot, Stability and convergence of the space fractional variable-order Schrödinger equation, Adv. Difference Equ., 2013 (2013).
doi: 10.1186/1687-1847-2013-80.
|
[5]
|
D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional Calaulus, Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos, 3, Springer Science and Business Media LLC, 2012.
doi: 10.1142/9789814355216.
|
[6]
|
D. Baleanu, J. A. T. Machado and A. C. J. Luo, Fractional Dynamics and Control, Springer, New York, 2012.
doi: 10.1007/978-1-4614-0457-6.
|
[7]
|
D. A. Benson, S. W. Wheatcraft and M. M. Meerschaert, Application of a fractional advection-dispersion equation, Water Resour. Res., 36 (2000), 1403-1412.
doi: 10.1029/2000WR900031.
|
[8]
|
A. V. Chechkin, R. Gorenflo and I. M. Sokolov, Fractional diffusion in inhomogeneous media, J. Phys. A: Math. Gen., 38 (2005), L679–L684.
doi: 10.1088/0305-4470/38/42/L03.
|
[9]
|
B. Chen-Charpentier, G. González-Parra and A. J. Arenas, Fractional order financial models for awareness and trial advertising decisions, Comput. Econ., 48 (2016), 555-568.
doi: 10.1007/s10614-015-9546-z.
|
[10]
|
C. Chen, F. Liu, K. Burrage and Y. Chen, Numerical methods of the variable-order Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivative, IMA J. Appl. Math., 78 (2013), 924-944.
doi: 10.1093/imamat/hxr079.
|
[11]
|
C. M. Chen, F. Liu, V. Anh and I. Turner, Numerical simulation for the variable-order Galilei invariant advection diffusion equation with a nonlinear source term, Appl. Math. Comput., 217 (2011), 5729-5742.
doi: 10.1016/j.amc.2010.12.049.
|
[12]
|
C. F. M. Coimbra, Mechanics with variable-order differential operators, Ann. Phys., 12 (2003), 692-703.
doi: 10.1002/andp.200310032.
|
[13]
|
A. J. Dodson and E. Muller, Models of new product diffusion through advertising and word-of-mouth, Management Science, 24 (1978), 1557-1676.
doi: 10.1287/mnsc.24.15.1568.
|
[14]
|
W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer, New York, NY, USA, 1975.
|
[15]
|
J. Huang, M. Leng and L. Liang, Recent developments in dynamic advertising research, European Journal of Operational Research, 220 (2012), 591-609.
doi: 10.1016/j.ejor.2012.02.031.
|
[16]
|
R. C. Koeller, Application of fractional calculus to the theory of viscoelasticity, J. Appl. Mech., 51 (1984), 229-307.
doi: 10.1115/1.3167616.
|
[17]
|
W. Lin, Global existence theory and chaos control of fractional differential equations, J. Math. Anal. Appl., 332 (2007), 709-726.
doi: 10.1016/j.jmaa.2006.10.040.
|
[18]
|
C. F. Lorenzo and T. T. Hartley, Variable order and distributed order fractional operators, Nonlinear Dyn., 29 (2002), 57-98.
doi: 10.1023/A:1016586905654.
|
[19]
|
C. F. Lorenzo and T. T. Hartley, Initialization, conceptualization, and application in the generalized fractional calculus, Critical Reviews in Biomedical Engineering, 5 (2007), 447-553.
|
[20]
|
D. L. Lukes, Differential Equations: Classical to controlled, Mathematics in Science and Engineering, 162, Academic Press, New York, NY, USA, 1982.
|
[21]
|
D. Matignon, Stability result on fractional differential equations with applications to control processing, Computational Engineering in Systems Applications, 2 (1996), 963-968.
|
[22]
|
R. E. Mickens, Nonstandard Finite Difference Model of Differential Equations, World Scientific, Singapore, 1994.
|
[23]
|
R. E. Mickens, Exact solutions to a finite-difference model of a nonlinear reaction-advection equation: Implications for numerical analysis, Numerical Methods for Partial Differential Equations, 5 (1989), 313-325.
doi: 10.1002/num.1690050404.
|
[24]
|
R. E. Mickens, Nonstandard finite difference schemes for differential equations, Journal of Difference Equations and Applications, 8 (2002), 823-847.
doi: 10.1080/1023619021000000807.
|
[25]
|
E. Muller, Trial/awareness advertising decisions: A control problem with phase diagrams with non-stationary boundaries, Journal of Economic Dynamics and Control, 6 (1983), 333-350.
|
[26]
|
Z. M. Odibat and N. T. Shawagfeh, Generalized taylor's formula, Applied Mathematics and Computation, 186 (2007), 286-293.
doi: 10.1016/j.amc.2006.07.102.
|
[27]
|
I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
|
[28]
|
Y. Povstenko, Fractional Thermoelasticity, Solid Mechanics and Its Applications, Springer International Publishing Switzerland, 2015.
doi: 10.1007/978-3-319-15335-3.
|
[29]
|
F. A. Rihan, S. Lakshmanan, A. H. Hashish, R. Rakkiyappan and E. Ahmed, Fractional-order delayed predator-prey systems with Holling type-II functional response, Nonlinear Dyn., 80 (2015), 777-789.
doi: 10.1007/s11071-015-1905-8.
|
[30]
|
S. G. Samko and B. Ross, Integration and differentiation to a variable fractional order, Integral Transform and Special Functions, 1 (1993), 277-300.
|
[31]
|
S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, New York Gordon and Breach Science Publishers, 1993.
|
[32]
|
R. Scherer, S. Kalla, Y. Tang and J. Huang, The Grünwald-Letnikov method for fractional differential equations, Comput. Math. Appl., 62 (2011), 902-917.
doi: 10.1016/j.camwa.2011.03.054.
|
[33]
|
S. Shen, F. Liu, V. Anh, I. Turner and J. Chen, A characteristic difference method for the variable-order fractional advection-diffusion equation, J. Appl. Math. Comput., 42 (2013), 371-386.
doi: 10.1007/s12190-012-0642-0.
|
[34]
|
S. Shen, F. Liu, J. Chen, I. Turner and V. Anh, Numerical techniques for the variable order time fractional diffusion equation, Appl. Math. Comput., 218 (2012), 10861-10870.
doi: 10.1016/j.amc.2012.04.047.
|
[35]
|
H. G. Sun, W. Chen, H. Wei and Y. Q. Chen, A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems, Eur. Phys. J. Spec. Top., 193 (2011), 185-192.
doi: 10.1140/epjst/e2011-01390-6.
|
[36]
|
H. G. Sun, A. Chang, Y. Zhang and W. Chen, A review on variable-order fractional differential equations: Mathematical foundations, physical models, numerical methods and applications, Fract. Calc. Appl. Anal., 22 (2019), 27-59.
doi: 10.1515/fca-2019-0003.
|
[37]
|
N. H. Sweilam and S. M. AL-Mekhlafi, Optimal control for a time delay multi-strain tuberculosis fractional model: A numerical approach, IMA Journal of Mathematical Control and Information, 36 (2019), 317-340.
doi: 10.1093/imamci/dnx046.
|
[38]
|
N. H. Sweilam and S. M. AL-Mekhlafi, On the optimal control for fractional multi-strain TB model, Optimal Control Applications and Methods, 37 (2016), 1355-1374.
doi: 10.1002/oca.2247.
|
[39]
|
N. H. Sweilam and S. M. AL-Mekhlafi, Legendre spectral-collocation method for solving fractional optimal control of HIV infection of $Cd4^{+}T$ cells mathematical model, The Journal of Defense Modeling and Simulation, 14 (2017), 273-284.
doi: 10.1177/1548512916677582.
|
[40]
|
N. H. Sweilam and M. M. Abou Hasan, Numerical solutions of a general coupled nonlinear system of parabolic and hyperbolic equations of thermoelasticity, Eur. Phys. J. Plus, 132 (2017).
doi: 10.1140/epjp/i2017-11484-x.
|
[41]
|
N. H. Sweilam and M. M. Abou Hasan, Numerical approximation of Lévy-Feller fractional diffusion equation via Chebyshev-Legendre collocation method, Eur. Phys. J. Plus, 131 (2016).
doi: 10.1140/epjp/i2016-16251-y.
|
[42]
|
N. H. Sweilam and M. M. Abou Hasan, Numerical simulation for the variable-order fractional Schrödinger equation with the quantum Riesz-Feller derivative, Adv. Appl. Math. Mech., 9 (2017), 990-1011.
doi: 10.4208/aamm.2015.m1312.
|
[43]
|
N. H. Sweilam, M. M. Abou Hasan and D. Baleanu, New studies for general fractional financial models of awareness and trial advertising decisions, Chaos, Solitons and Fractals, 104 (2017), 772-784.
doi: 10.1016/j.chaos.2017.09.013.
|
[44]
|
N. H. Sweilam and M. M. Abou Hasan, An improved method for nonlinear variable order Lévy-Feller advection-dispersion equation, Bull. Malays. Math. Sci. Soc., 42 (2019), 3021-3046.
doi: 10.1007/s40840-018-0644-7.
|
[45]
|
V. E. Tarasov, Fractional Dynamics Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer Science and Business Media, 2011.
doi: 10.1007/s10773-009-0202-z.
|
[46]
|
M. Wang, Q. Gou, C. Wu and L. Liang, An aggregate advertising responsemodel based on consumer population dynamics, International Journal of Applied Management Science, 5 (2013), 22-38.
|
[47]
|
P. Zhuang, F. Liu, V. Anh and I. Turner, Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term, SIAM J. Numer. Anal., 47 (2009), 1760-1781.
doi: 10.1137/080730597.
|