doi: 10.3934/dcdss.2021086
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

New stability result for a Bresse system with one infinite memory in the shear angle equation

1. 

The Preparatory Year Program

2. 

The Interdisciplinary Research Center in Construction and Building Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

3. 

Department of Basic Engineering Sciences, College of Engineering, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34151, Saudi Arabia

* Corresponding author: Adel M. Al-Mahdi

Received  March 2021 Revised  May 2021 Early access July 2021

Fund Project: This paper is supported by KFUPM grant #SB191037

In this paper, we consider a one-dimensional linear Bresse system with only one infinite memory acting in the second equation (the shear angle equation) of the system. We prove that the asymptotic stability of the system holds under some general condition imposed into the relaxation function, precisely,
$ g^{\prime}(t)\le -\xi(t) G(g(t)). $
The proof is based on the multiplier method and makes use of convex functions and some inequalities. More specifically, we remove the constraint imposed on the boundedness condition on the initial data
$ \eta{0x} $
. This study generalizes and improves previous literature outcomes.
Citation: Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Saeed M. Ali. New stability result for a Bresse system with one infinite memory in the shear angle equation. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2021086
References:
[1]

M. O. AlvesL. H. FatoriM. A. Jorge Silva and R. N. Monteiro, Stability and optimality of decay rate for a weakly dissipative bresse system, Mathematical Methods in the Applied Sciences, 38 (2015), 898-908.  doi: 10.1002/mma.3115.  Google Scholar

[2]

V. I. Arnol'd, Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics, 60, Springer-Verlag, New York-Heidelberg (1978). doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[3]

A. M. Al-Mahdi, General stability result for a viscoelastic plate equation with past history and general kernel, Journal of Mathematical Analysis and Applications, 490 (2020), 124216, 1–19. doi: 10.1016/j.jmaa.2020.124216.  Google Scholar

[4]

A. M. Al-Mahdi, Stability result of a viscoelastic plate equation with past history and a logarithmic nonlinearity, Boundary Value Problems, 2020 (2020), 1-20.  doi: 10.1186/s13661-020-01382-9.  Google Scholar

[5]

F. A. BoussouiraJ. E. M. Rivera and D. da S. A. Júnior, Stability to weak dissipative Bresse system, J. Math. Anal. Appl., 374 (2011), 481-498.  doi: 10.1016/j.jmaa.2010.07.046.  Google Scholar

[6]

J. A. Bresse, Cours De Mecanique Appliquee: Re'sistance Des Mate'riaux Et Stabilite'des Constructions, Mallet-Bachelier, Paris (1859). doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[7]

W. CharlesJ. A. SorianoF. A. F. Nascimento and J. H. Rodrigues, Decay rates for bresse system with arbitrary nonlinear localized damping, Journal of Differential Equations, 255 (2013), 2267-2290.  doi: 10.1016/j.jde.2013.06.014.  Google Scholar

[8]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Archive for Rational Mechanics and Analysis, 37 (1970), 297-308.  doi: 10.1007/BF00251609.  Google Scholar

[9]

L. H. Fatori and R. N. Monteiro, The optimal decay rate for a weak dissipative Bresse system, Appl. Math. Lett., 25 (2012), 600-604.  doi: 10.1016/j.aml.2011.09.067.  Google Scholar

[10]

L. H. Fatori and J. E. M. Rivera, Rates of decay to weak thermoelastic Bresse system, IMA J. Appl. Math., 75 (2010), 881-904.  doi: 10.1093/imamat/hxq038.  Google Scholar

[11]

A. Guesmia and M. Kafini, Bresse system with infinite memories, Math. Methods Appl. Sci., 38 (2015), 2389-2402.  doi: 10.1002/mma.3228.  Google Scholar

[12]

A. Guesmia and M. Kirane, Uniform and weak stability of Bresse system with two infinite memories, Z. Angew. Math. Phys., 67 (2016), 1-39.  doi: 10.1007/s00033-016-0719-y.  Google Scholar

[13]

A. Guesmia, Asymptotic stability of Bresse system with one infinite memory in the longitudinal displacements, Mediterr. J. Math., 14 (2017), 1-19.  doi: 10.1007/s00009-017-0877-y.  Google Scholar

[14]

A. Guesmia and S. A. Messaoudi, A general stability result in a Timoshenko system with infinite memory: A new approach, Math. Methods Appl. Sci., 37 (2014), 384-392.  doi: 10.1002/mma.2797.  Google Scholar

[15]

A. Guesmia, New general decay rates of solutions for two viscoelastic wave equations with infinite memory, Math. Model. Anal., 25 (2020), 351-373.  doi: 10.3846/mma.2020.10458.  Google Scholar

[16]

Z. Liu and B. Rao, Energy decay rate of the thermoelastic Bresse system, Z. Angew. Math. Phys., 60 (2009), 54-69.  doi: 10.1007/s00033-008-6122-6.  Google Scholar

[17]

J. E. LagneseG. Leugering and E. J. P. G. Schmidt, Modelling of dynamic networks of thin thermoelastic beams, Math. Methods Appl. Sci., 16 (1993), 327-358.  doi: 10.1002/mma.1670160503.  Google Scholar

[18]

J. E. Lagnese, G. Leugering and E. J. P. G. Schmidt, Modeling, analysis and control of dynamic elastic multi-link structures, in Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA (1994). doi: 10.1007/978-1-4612-0273-8.  Google Scholar

[19]

M. I. Mustafa, Optimal decay rates for the viscoelastic wave equation, Math. Methods Appl. Sci., 41 (2018), 192-204.  doi: 10.1002/mma.4604.  Google Scholar

[20]

N. Noun and A. Wehbe, Stabilisation faible interne locale de système élastique de Bresse, C. R. Math. Acad. Sci. Paris, 350 (2012), 493-498.  doi: 10.1016/j.crma.2012.04.003.  Google Scholar

[21]

N. Najdi and A. Wehbe, Weakly locally thermal stabilization of Bresse systems, Electron. J. Differential Equations, 182 (2014), 1-19.   Google Scholar

[22]

M. L. SantosD. S. A. Júnior and J. E. M. Rivera, The stability number of the Timoshenko system with second sound, J. Differential Equations, 253 (2012), 2715-2733.  doi: 10.1016/j.jde.2012.07.012.  Google Scholar

[23]

J. A. SorianoJ. E. M. Rivera and L. H. Fatori, Bresse system with indefinite damping, J. Math. Anal. Appl., 387 (2012), 284-290.  doi: 10.1016/j.jmaa.2011.08.072.  Google Scholar

[24]

M. L. SantosA. Soufyane and D. da S. A. Júnior, Asymptotic behavior to Bresse system with past history, Quart. Appl. Math., 73 (2015), 23-54.  doi: 10.1090/S0033-569X-2014-01382-4.  Google Scholar

[25]

A. Soufyane and B. Said-Houari, The effect of the wave speeds and the frictional damping terms on the decay rate of the Bresse system, Evol. Equ. & Control Theory, 3 (2014), 713-738.  doi: 10.3934/eect.2014.3.713.  Google Scholar

[26]

J. A. SorianoW. Charles and R. Schulz, Asymptotic stability for Bresse systems, J. Math. Anal. Appl., 412 (2014), 369-380.  doi: 10.1016/j.jmaa.2013.10.019.  Google Scholar

[27]

A. Wehbe and W. Youssef, Exponential and polynomial stability of an elastic Bresse system with two locally distributed feedbacks, J. Math. Phys., 51 (2010), 1067-1078.  doi: 10.1063/1.3486094.  Google Scholar

show all references

References:
[1]

M. O. AlvesL. H. FatoriM. A. Jorge Silva and R. N. Monteiro, Stability and optimality of decay rate for a weakly dissipative bresse system, Mathematical Methods in the Applied Sciences, 38 (2015), 898-908.  doi: 10.1002/mma.3115.  Google Scholar

[2]

V. I. Arnol'd, Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics, 60, Springer-Verlag, New York-Heidelberg (1978). doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[3]

A. M. Al-Mahdi, General stability result for a viscoelastic plate equation with past history and general kernel, Journal of Mathematical Analysis and Applications, 490 (2020), 124216, 1–19. doi: 10.1016/j.jmaa.2020.124216.  Google Scholar

[4]

A. M. Al-Mahdi, Stability result of a viscoelastic plate equation with past history and a logarithmic nonlinearity, Boundary Value Problems, 2020 (2020), 1-20.  doi: 10.1186/s13661-020-01382-9.  Google Scholar

[5]

F. A. BoussouiraJ. E. M. Rivera and D. da S. A. Júnior, Stability to weak dissipative Bresse system, J. Math. Anal. Appl., 374 (2011), 481-498.  doi: 10.1016/j.jmaa.2010.07.046.  Google Scholar

[6]

J. A. Bresse, Cours De Mecanique Appliquee: Re'sistance Des Mate'riaux Et Stabilite'des Constructions, Mallet-Bachelier, Paris (1859). doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[7]

W. CharlesJ. A. SorianoF. A. F. Nascimento and J. H. Rodrigues, Decay rates for bresse system with arbitrary nonlinear localized damping, Journal of Differential Equations, 255 (2013), 2267-2290.  doi: 10.1016/j.jde.2013.06.014.  Google Scholar

[8]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Archive for Rational Mechanics and Analysis, 37 (1970), 297-308.  doi: 10.1007/BF00251609.  Google Scholar

[9]

L. H. Fatori and R. N. Monteiro, The optimal decay rate for a weak dissipative Bresse system, Appl. Math. Lett., 25 (2012), 600-604.  doi: 10.1016/j.aml.2011.09.067.  Google Scholar

[10]

L. H. Fatori and J. E. M. Rivera, Rates of decay to weak thermoelastic Bresse system, IMA J. Appl. Math., 75 (2010), 881-904.  doi: 10.1093/imamat/hxq038.  Google Scholar

[11]

A. Guesmia and M. Kafini, Bresse system with infinite memories, Math. Methods Appl. Sci., 38 (2015), 2389-2402.  doi: 10.1002/mma.3228.  Google Scholar

[12]

A. Guesmia and M. Kirane, Uniform and weak stability of Bresse system with two infinite memories, Z. Angew. Math. Phys., 67 (2016), 1-39.  doi: 10.1007/s00033-016-0719-y.  Google Scholar

[13]

A. Guesmia, Asymptotic stability of Bresse system with one infinite memory in the longitudinal displacements, Mediterr. J. Math., 14 (2017), 1-19.  doi: 10.1007/s00009-017-0877-y.  Google Scholar

[14]

A. Guesmia and S. A. Messaoudi, A general stability result in a Timoshenko system with infinite memory: A new approach, Math. Methods Appl. Sci., 37 (2014), 384-392.  doi: 10.1002/mma.2797.  Google Scholar

[15]

A. Guesmia, New general decay rates of solutions for two viscoelastic wave equations with infinite memory, Math. Model. Anal., 25 (2020), 351-373.  doi: 10.3846/mma.2020.10458.  Google Scholar

[16]

Z. Liu and B. Rao, Energy decay rate of the thermoelastic Bresse system, Z. Angew. Math. Phys., 60 (2009), 54-69.  doi: 10.1007/s00033-008-6122-6.  Google Scholar

[17]

J. E. LagneseG. Leugering and E. J. P. G. Schmidt, Modelling of dynamic networks of thin thermoelastic beams, Math. Methods Appl. Sci., 16 (1993), 327-358.  doi: 10.1002/mma.1670160503.  Google Scholar

[18]

J. E. Lagnese, G. Leugering and E. J. P. G. Schmidt, Modeling, analysis and control of dynamic elastic multi-link structures, in Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA (1994). doi: 10.1007/978-1-4612-0273-8.  Google Scholar

[19]

M. I. Mustafa, Optimal decay rates for the viscoelastic wave equation, Math. Methods Appl. Sci., 41 (2018), 192-204.  doi: 10.1002/mma.4604.  Google Scholar

[20]

N. Noun and A. Wehbe, Stabilisation faible interne locale de système élastique de Bresse, C. R. Math. Acad. Sci. Paris, 350 (2012), 493-498.  doi: 10.1016/j.crma.2012.04.003.  Google Scholar

[21]

N. Najdi and A. Wehbe, Weakly locally thermal stabilization of Bresse systems, Electron. J. Differential Equations, 182 (2014), 1-19.   Google Scholar

[22]

M. L. SantosD. S. A. Júnior and J. E. M. Rivera, The stability number of the Timoshenko system with second sound, J. Differential Equations, 253 (2012), 2715-2733.  doi: 10.1016/j.jde.2012.07.012.  Google Scholar

[23]

J. A. SorianoJ. E. M. Rivera and L. H. Fatori, Bresse system with indefinite damping, J. Math. Anal. Appl., 387 (2012), 284-290.  doi: 10.1016/j.jmaa.2011.08.072.  Google Scholar

[24]

M. L. SantosA. Soufyane and D. da S. A. Júnior, Asymptotic behavior to Bresse system with past history, Quart. Appl. Math., 73 (2015), 23-54.  doi: 10.1090/S0033-569X-2014-01382-4.  Google Scholar

[25]

A. Soufyane and B. Said-Houari, The effect of the wave speeds and the frictional damping terms on the decay rate of the Bresse system, Evol. Equ. & Control Theory, 3 (2014), 713-738.  doi: 10.3934/eect.2014.3.713.  Google Scholar

[26]

J. A. SorianoW. Charles and R. Schulz, Asymptotic stability for Bresse systems, J. Math. Anal. Appl., 412 (2014), 369-380.  doi: 10.1016/j.jmaa.2013.10.019.  Google Scholar

[27]

A. Wehbe and W. Youssef, Exponential and polynomial stability of an elastic Bresse system with two locally distributed feedbacks, J. Math. Phys., 51 (2010), 1067-1078.  doi: 10.1063/1.3486094.  Google Scholar

[1]

Jianghao Hao, Junna Zhang. General stability of abstract thermoelastic system with infinite memory and delay. Mathematical Control & Related Fields, 2021, 11 (2) : 353-371. doi: 10.3934/mcrf.2020040

[2]

Aissa Guesmia, Nasser-eddine Tatar. Some well-posedness and stability results for abstract hyperbolic equations with infinite memory and distributed time delay. Communications on Pure & Applied Analysis, 2015, 14 (2) : 457-491. doi: 10.3934/cpaa.2015.14.457

[3]

Qiong Zhang. Exponential stability of a joint-leg-beam system with memory damping. Mathematical Control & Related Fields, 2015, 5 (2) : 321-333. doi: 10.3934/mcrf.2015.5.321

[4]

Salim A. Messaoudi, Muhammad I. Mustafa. A general stability result in a memory-type Timoshenko system. Communications on Pure & Applied Analysis, 2013, 12 (2) : 957-972. doi: 10.3934/cpaa.2013.12.957

[5]

Xin-Guang Yang, Jing Zhang, Shu Wang. Stability and dynamics of a weak viscoelastic system with memory and nonlinear time-varying delay. Discrete & Continuous Dynamical Systems, 2020, 40 (3) : 1493-1515. doi: 10.3934/dcds.2020084

[6]

Ahmed Bchatnia, Aissa Guesmia. Well-posedness and asymptotic stability for the Lamé system with infinite memories in a bounded domain. Mathematical Control & Related Fields, 2014, 4 (4) : 451-463. doi: 10.3934/mcrf.2014.4.451

[7]

Victor Zvyagin, Vladimir Orlov. On one problem of viscoelastic fluid dynamics with memory on an infinite time interval. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3855-3877. doi: 10.3934/dcdsb.2018114

[8]

Tomás Caraballo, María J. Garrido-Atienza, Björn Schmalfuss, José Valero. Attractors for a random evolution equation with infinite memory: Theoretical results. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1779-1800. doi: 10.3934/dcdsb.2017106

[9]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[10]

Alexander Pimenov, Dmitrii I. Rachinskii. Linear stability analysis of systems with Preisach memory. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 997-1018. doi: 10.3934/dcdsb.2009.11.997

[11]

Victor Isakov. On increasing stability of the continuation for elliptic equations of second order without (pseudo)convexity assumptions. Inverse Problems & Imaging, 2019, 13 (5) : 983-1006. doi: 10.3934/ipi.2019044

[12]

Xin-Guang Yang. An Erratum on "Stability and dynamics of a weak viscoelastic system with memory and nonlinear time-varying delay" (Discrete Continuous Dynamic Systems, 40(3), 2020, 1493-1515). Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021161

[13]

Jianhong Wu, Weiguang Yao, Huaiping Zhu. Immune system memory realization in a population model. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 241-259. doi: 10.3934/dcdsb.2007.8.241

[14]

Federico Mario Vegni. Dissipativity of a conserved phase-field system with memory. Discrete & Continuous Dynamical Systems, 2003, 9 (4) : 949-968. doi: 10.3934/dcds.2003.9.949

[15]

Yavar Kian. Stability of the determination of a coefficient for wave equations in an infinite waveguide. Inverse Problems & Imaging, 2014, 8 (3) : 713-732. doi: 10.3934/ipi.2014.8.713

[16]

Yuri Bakhtin. Lyapunov exponents for stochastic differential equations with infinite memory and application to stochastic Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 697-709. doi: 10.3934/dcdsb.2006.6.697

[17]

Corrado Mascia. Stability analysis for linear heat conduction with memory kernels described by Gamma functions. Discrete & Continuous Dynamical Systems, 2015, 35 (8) : 3569-3584. doi: 10.3934/dcds.2015.35.3569

[18]

Alexandra Rodkina, Henri Schurz, Leonid Shaikhet. Almost sure stability of some stochastic dynamical systems with memory. Discrete & Continuous Dynamical Systems, 2008, 21 (2) : 571-593. doi: 10.3934/dcds.2008.21.571

[19]

Monica Conti, Elsa M. Marchini, Vittorino Pata. Exponential stability for a class of linear hyperbolic equations with hereditary memory. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1555-1565. doi: 10.3934/dcdsb.2013.18.1555

[20]

Vittorino Pata. Exponential stability in linear viscoelasticity with almost flat memory kernels. Communications on Pure & Applied Analysis, 2010, 9 (3) : 721-730. doi: 10.3934/cpaa.2010.9.721

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (152)
  • HTML views (190)
  • Cited by (0)

[Back to Top]