May  2022, 15(5): 995-1014. doi: 10.3934/dcdss.2021086

New stability result for a Bresse system with one infinite memory in the shear angle equation

1. 

The Preparatory Year Program

2. 

The Interdisciplinary Research Center in Construction and Building Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

3. 

Department of Basic Engineering Sciences, College of Engineering, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34151, Saudi Arabia

* Corresponding author: Adel M. Al-Mahdi

Received  March 2021 Revised  May 2021 Published  May 2022 Early access  July 2021

Fund Project: This paper is supported by KFUPM grant #SB191037

In this paper, we consider a one-dimensional linear Bresse system with only one infinite memory acting in the second equation (the shear angle equation) of the system. We prove that the asymptotic stability of the system holds under some general condition imposed into the relaxation function, precisely,
$ g^{\prime}(t)\le -\xi(t) G(g(t)). $
The proof is based on the multiplier method and makes use of convex functions and some inequalities. More specifically, we remove the constraint imposed on the boundedness condition on the initial data
$ \eta{0x} $
. This study generalizes and improves previous literature outcomes.
Citation: Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Saeed M. Ali. New stability result for a Bresse system with one infinite memory in the shear angle equation. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 995-1014. doi: 10.3934/dcdss.2021086
References:
[1]

M. O. AlvesL. H. FatoriM. A. Jorge Silva and R. N. Monteiro, Stability and optimality of decay rate for a weakly dissipative bresse system, Mathematical Methods in the Applied Sciences, 38 (2015), 898-908.  doi: 10.1002/mma.3115.

[2]

V. I. Arnol'd, Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics, 60, Springer-Verlag, New York-Heidelberg (1978). doi: 10.1007/978-1-4612-0873-0.

[3]

A. M. Al-Mahdi, General stability result for a viscoelastic plate equation with past history and general kernel, Journal of Mathematical Analysis and Applications, 490 (2020), 124216, 1–19. doi: 10.1016/j.jmaa.2020.124216.

[4]

A. M. Al-Mahdi, Stability result of a viscoelastic plate equation with past history and a logarithmic nonlinearity, Boundary Value Problems, 2020 (2020), 1-20.  doi: 10.1186/s13661-020-01382-9.

[5]

F. A. BoussouiraJ. E. M. Rivera and D. da S. A. Júnior, Stability to weak dissipative Bresse system, J. Math. Anal. Appl., 374 (2011), 481-498.  doi: 10.1016/j.jmaa.2010.07.046.

[6]

J. A. Bresse, Cours De Mecanique Appliquee: Re'sistance Des Mate'riaux Et Stabilite'des Constructions, Mallet-Bachelier, Paris (1859). doi: 10.1007/978-1-4612-0873-0.

[7]

W. CharlesJ. A. SorianoF. A. F. Nascimento and J. H. Rodrigues, Decay rates for bresse system with arbitrary nonlinear localized damping, Journal of Differential Equations, 255 (2013), 2267-2290.  doi: 10.1016/j.jde.2013.06.014.

[8]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Archive for Rational Mechanics and Analysis, 37 (1970), 297-308.  doi: 10.1007/BF00251609.

[9]

L. H. Fatori and R. N. Monteiro, The optimal decay rate for a weak dissipative Bresse system, Appl. Math. Lett., 25 (2012), 600-604.  doi: 10.1016/j.aml.2011.09.067.

[10]

L. H. Fatori and J. E. M. Rivera, Rates of decay to weak thermoelastic Bresse system, IMA J. Appl. Math., 75 (2010), 881-904.  doi: 10.1093/imamat/hxq038.

[11]

A. Guesmia and M. Kafini, Bresse system with infinite memories, Math. Methods Appl. Sci., 38 (2015), 2389-2402.  doi: 10.1002/mma.3228.

[12]

A. Guesmia and M. Kirane, Uniform and weak stability of Bresse system with two infinite memories, Z. Angew. Math. Phys., 67 (2016), 1-39.  doi: 10.1007/s00033-016-0719-y.

[13]

A. Guesmia, Asymptotic stability of Bresse system with one infinite memory in the longitudinal displacements, Mediterr. J. Math., 14 (2017), 1-19.  doi: 10.1007/s00009-017-0877-y.

[14]

A. Guesmia and S. A. Messaoudi, A general stability result in a Timoshenko system with infinite memory: A new approach, Math. Methods Appl. Sci., 37 (2014), 384-392.  doi: 10.1002/mma.2797.

[15]

A. Guesmia, New general decay rates of solutions for two viscoelastic wave equations with infinite memory, Math. Model. Anal., 25 (2020), 351-373.  doi: 10.3846/mma.2020.10458.

[16]

Z. Liu and B. Rao, Energy decay rate of the thermoelastic Bresse system, Z. Angew. Math. Phys., 60 (2009), 54-69.  doi: 10.1007/s00033-008-6122-6.

[17]

J. E. LagneseG. Leugering and E. J. P. G. Schmidt, Modelling of dynamic networks of thin thermoelastic beams, Math. Methods Appl. Sci., 16 (1993), 327-358.  doi: 10.1002/mma.1670160503.

[18]

J. E. Lagnese, G. Leugering and E. J. P. G. Schmidt, Modeling, analysis and control of dynamic elastic multi-link structures, in Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA (1994). doi: 10.1007/978-1-4612-0273-8.

[19]

M. I. Mustafa, Optimal decay rates for the viscoelastic wave equation, Math. Methods Appl. Sci., 41 (2018), 192-204.  doi: 10.1002/mma.4604.

[20]

N. Noun and A. Wehbe, Stabilisation faible interne locale de système élastique de Bresse, C. R. Math. Acad. Sci. Paris, 350 (2012), 493-498.  doi: 10.1016/j.crma.2012.04.003.

[21]

N. Najdi and A. Wehbe, Weakly locally thermal stabilization of Bresse systems, Electron. J. Differential Equations, 182 (2014), 1-19. 

[22]

M. L. SantosD. S. A. Júnior and J. E. M. Rivera, The stability number of the Timoshenko system with second sound, J. Differential Equations, 253 (2012), 2715-2733.  doi: 10.1016/j.jde.2012.07.012.

[23]

J. A. SorianoJ. E. M. Rivera and L. H. Fatori, Bresse system with indefinite damping, J. Math. Anal. Appl., 387 (2012), 284-290.  doi: 10.1016/j.jmaa.2011.08.072.

[24]

M. L. SantosA. Soufyane and D. da S. A. Júnior, Asymptotic behavior to Bresse system with past history, Quart. Appl. Math., 73 (2015), 23-54.  doi: 10.1090/S0033-569X-2014-01382-4.

[25]

A. Soufyane and B. Said-Houari, The effect of the wave speeds and the frictional damping terms on the decay rate of the Bresse system, Evol. Equ. & Control Theory, 3 (2014), 713-738.  doi: 10.3934/eect.2014.3.713.

[26]

J. A. SorianoW. Charles and R. Schulz, Asymptotic stability for Bresse systems, J. Math. Anal. Appl., 412 (2014), 369-380.  doi: 10.1016/j.jmaa.2013.10.019.

[27]

A. Wehbe and W. Youssef, Exponential and polynomial stability of an elastic Bresse system with two locally distributed feedbacks, J. Math. Phys., 51 (2010), 1067-1078.  doi: 10.1063/1.3486094.

show all references

References:
[1]

M. O. AlvesL. H. FatoriM. A. Jorge Silva and R. N. Monteiro, Stability and optimality of decay rate for a weakly dissipative bresse system, Mathematical Methods in the Applied Sciences, 38 (2015), 898-908.  doi: 10.1002/mma.3115.

[2]

V. I. Arnol'd, Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics, 60, Springer-Verlag, New York-Heidelberg (1978). doi: 10.1007/978-1-4612-0873-0.

[3]

A. M. Al-Mahdi, General stability result for a viscoelastic plate equation with past history and general kernel, Journal of Mathematical Analysis and Applications, 490 (2020), 124216, 1–19. doi: 10.1016/j.jmaa.2020.124216.

[4]

A. M. Al-Mahdi, Stability result of a viscoelastic plate equation with past history and a logarithmic nonlinearity, Boundary Value Problems, 2020 (2020), 1-20.  doi: 10.1186/s13661-020-01382-9.

[5]

F. A. BoussouiraJ. E. M. Rivera and D. da S. A. Júnior, Stability to weak dissipative Bresse system, J. Math. Anal. Appl., 374 (2011), 481-498.  doi: 10.1016/j.jmaa.2010.07.046.

[6]

J. A. Bresse, Cours De Mecanique Appliquee: Re'sistance Des Mate'riaux Et Stabilite'des Constructions, Mallet-Bachelier, Paris (1859). doi: 10.1007/978-1-4612-0873-0.

[7]

W. CharlesJ. A. SorianoF. A. F. Nascimento and J. H. Rodrigues, Decay rates for bresse system with arbitrary nonlinear localized damping, Journal of Differential Equations, 255 (2013), 2267-2290.  doi: 10.1016/j.jde.2013.06.014.

[8]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Archive for Rational Mechanics and Analysis, 37 (1970), 297-308.  doi: 10.1007/BF00251609.

[9]

L. H. Fatori and R. N. Monteiro, The optimal decay rate for a weak dissipative Bresse system, Appl. Math. Lett., 25 (2012), 600-604.  doi: 10.1016/j.aml.2011.09.067.

[10]

L. H. Fatori and J. E. M. Rivera, Rates of decay to weak thermoelastic Bresse system, IMA J. Appl. Math., 75 (2010), 881-904.  doi: 10.1093/imamat/hxq038.

[11]

A. Guesmia and M. Kafini, Bresse system with infinite memories, Math. Methods Appl. Sci., 38 (2015), 2389-2402.  doi: 10.1002/mma.3228.

[12]

A. Guesmia and M. Kirane, Uniform and weak stability of Bresse system with two infinite memories, Z. Angew. Math. Phys., 67 (2016), 1-39.  doi: 10.1007/s00033-016-0719-y.

[13]

A. Guesmia, Asymptotic stability of Bresse system with one infinite memory in the longitudinal displacements, Mediterr. J. Math., 14 (2017), 1-19.  doi: 10.1007/s00009-017-0877-y.

[14]

A. Guesmia and S. A. Messaoudi, A general stability result in a Timoshenko system with infinite memory: A new approach, Math. Methods Appl. Sci., 37 (2014), 384-392.  doi: 10.1002/mma.2797.

[15]

A. Guesmia, New general decay rates of solutions for two viscoelastic wave equations with infinite memory, Math. Model. Anal., 25 (2020), 351-373.  doi: 10.3846/mma.2020.10458.

[16]

Z. Liu and B. Rao, Energy decay rate of the thermoelastic Bresse system, Z. Angew. Math. Phys., 60 (2009), 54-69.  doi: 10.1007/s00033-008-6122-6.

[17]

J. E. LagneseG. Leugering and E. J. P. G. Schmidt, Modelling of dynamic networks of thin thermoelastic beams, Math. Methods Appl. Sci., 16 (1993), 327-358.  doi: 10.1002/mma.1670160503.

[18]

J. E. Lagnese, G. Leugering and E. J. P. G. Schmidt, Modeling, analysis and control of dynamic elastic multi-link structures, in Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA (1994). doi: 10.1007/978-1-4612-0273-8.

[19]

M. I. Mustafa, Optimal decay rates for the viscoelastic wave equation, Math. Methods Appl. Sci., 41 (2018), 192-204.  doi: 10.1002/mma.4604.

[20]

N. Noun and A. Wehbe, Stabilisation faible interne locale de système élastique de Bresse, C. R. Math. Acad. Sci. Paris, 350 (2012), 493-498.  doi: 10.1016/j.crma.2012.04.003.

[21]

N. Najdi and A. Wehbe, Weakly locally thermal stabilization of Bresse systems, Electron. J. Differential Equations, 182 (2014), 1-19. 

[22]

M. L. SantosD. S. A. Júnior and J. E. M. Rivera, The stability number of the Timoshenko system with second sound, J. Differential Equations, 253 (2012), 2715-2733.  doi: 10.1016/j.jde.2012.07.012.

[23]

J. A. SorianoJ. E. M. Rivera and L. H. Fatori, Bresse system with indefinite damping, J. Math. Anal. Appl., 387 (2012), 284-290.  doi: 10.1016/j.jmaa.2011.08.072.

[24]

M. L. SantosA. Soufyane and D. da S. A. Júnior, Asymptotic behavior to Bresse system with past history, Quart. Appl. Math., 73 (2015), 23-54.  doi: 10.1090/S0033-569X-2014-01382-4.

[25]

A. Soufyane and B. Said-Houari, The effect of the wave speeds and the frictional damping terms on the decay rate of the Bresse system, Evol. Equ. & Control Theory, 3 (2014), 713-738.  doi: 10.3934/eect.2014.3.713.

[26]

J. A. SorianoW. Charles and R. Schulz, Asymptotic stability for Bresse systems, J. Math. Anal. Appl., 412 (2014), 369-380.  doi: 10.1016/j.jmaa.2013.10.019.

[27]

A. Wehbe and W. Youssef, Exponential and polynomial stability of an elastic Bresse system with two locally distributed feedbacks, J. Math. Phys., 51 (2010), 1067-1078.  doi: 10.1063/1.3486094.

[1]

Jianghao Hao, Junna Zhang. General stability of abstract thermoelastic system with infinite memory and delay. Mathematical Control and Related Fields, 2021, 11 (2) : 353-371. doi: 10.3934/mcrf.2020040

[2]

Aissa Guesmia, Nasser-eddine Tatar. Some well-posedness and stability results for abstract hyperbolic equations with infinite memory and distributed time delay. Communications on Pure and Applied Analysis, 2015, 14 (2) : 457-491. doi: 10.3934/cpaa.2015.14.457

[3]

Qiong Zhang. Exponential stability of a joint-leg-beam system with memory damping. Mathematical Control and Related Fields, 2015, 5 (2) : 321-333. doi: 10.3934/mcrf.2015.5.321

[4]

Salim A. Messaoudi, Muhammad I. Mustafa. A general stability result in a memory-type Timoshenko system. Communications on Pure and Applied Analysis, 2013, 12 (2) : 957-972. doi: 10.3934/cpaa.2013.12.957

[5]

Mohamed Alahyane, Mohammad M. Al-Gharabli, Adel M. Al-Mahdi. Theoretical and computational decay results for a Bresse system with one infinite memory in the longitudinal displacement. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022027

[6]

Xin-Guang Yang, Jing Zhang, Shu Wang. Stability and dynamics of a weak viscoelastic system with memory and nonlinear time-varying delay. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1493-1515. doi: 10.3934/dcds.2020084

[7]

Ahmed Bchatnia, Aissa Guesmia. Well-posedness and asymptotic stability for the Lamé system with infinite memories in a bounded domain. Mathematical Control and Related Fields, 2014, 4 (4) : 451-463. doi: 10.3934/mcrf.2014.4.451

[8]

Victor Zvyagin, Vladimir Orlov. On one problem of viscoelastic fluid dynamics with memory on an infinite time interval. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3855-3877. doi: 10.3934/dcdsb.2018114

[9]

Tomás Caraballo, María J. Garrido-Atienza, Björn Schmalfuss, José Valero. Attractors for a random evolution equation with infinite memory: Theoretical results. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1779-1800. doi: 10.3934/dcdsb.2017106

[10]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete and Continuous Dynamical Systems, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[11]

Alexander Pimenov, Dmitrii I. Rachinskii. Linear stability analysis of systems with Preisach memory. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 997-1018. doi: 10.3934/dcdsb.2009.11.997

[12]

Victor Isakov. On increasing stability of the continuation for elliptic equations of second order without (pseudo)convexity assumptions. Inverse Problems and Imaging, 2019, 13 (5) : 983-1006. doi: 10.3934/ipi.2019044

[13]

Xin-Guang Yang. An Erratum on "Stability and dynamics of a weak viscoelastic system with memory and nonlinear time-varying delay" (Discrete Continuous Dynamic Systems, 40(3), 2020, 1493-1515). Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1493-1494. doi: 10.3934/dcds.2021161

[14]

Jianhong Wu, Weiguang Yao, Huaiping Zhu. Immune system memory realization in a population model. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 241-259. doi: 10.3934/dcdsb.2007.8.241

[15]

Federico Mario Vegni. Dissipativity of a conserved phase-field system with memory. Discrete and Continuous Dynamical Systems, 2003, 9 (4) : 949-968. doi: 10.3934/dcds.2003.9.949

[16]

Yavar Kian. Stability of the determination of a coefficient for wave equations in an infinite waveguide. Inverse Problems and Imaging, 2014, 8 (3) : 713-732. doi: 10.3934/ipi.2014.8.713

[17]

Yuri Bakhtin. Lyapunov exponents for stochastic differential equations with infinite memory and application to stochastic Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 697-709. doi: 10.3934/dcdsb.2006.6.697

[18]

Corrado Mascia. Stability analysis for linear heat conduction with memory kernels described by Gamma functions. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3569-3584. doi: 10.3934/dcds.2015.35.3569

[19]

Alexandra Rodkina, Henri Schurz, Leonid Shaikhet. Almost sure stability of some stochastic dynamical systems with memory. Discrete and Continuous Dynamical Systems, 2008, 21 (2) : 571-593. doi: 10.3934/dcds.2008.21.571

[20]

Monica Conti, Elsa M. Marchini, Vittorino Pata. Exponential stability for a class of linear hyperbolic equations with hereditary memory. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1555-1565. doi: 10.3934/dcdsb.2013.18.1555

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (432)
  • HTML views (368)
  • Cited by (0)

[Back to Top]