• Previous Article
    Global existence, exponential decay and blow-up of solutions for a class of fractional pseudo-parabolic equations with logarithmic nonlinearity
  • DCDS-S Home
  • This Issue
  • Next Article
    Dependent delay stability characterization for a polynomial T-S Carbon Dioxide model
doi: 10.3934/dcdss.2021089
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Stability of a suspension bridge with a localized structural damping

1. 

Department of Mathematics, University of Gabès, Gabès, Tunisia

2. 

The Preparatory Year Program and The Interdisciplinary Research Center in Construction and Building Materials, King Fahd University of Petroleum and Minerals, Dhahran, KSA

3. 

Department of Mathematics, College of Sciences, University of Sharjah, P.O.Box 27272, Sharjah, UAE

* Corresponding author: Mohammad Al-Gharabli

Received  February 2021 Revised  June 2021 Early access August 2021

Fund Project: The second and third authors are supported by KFUPM-Project #SB201003

Strong vibrations can cause lots of damage to structures and break materials apart. The main reason for the Tacoma Narrows Bridge collapse was the sudden transition from longitudinal to torsional oscillations caused by a resonance phenomenon. There exist evidences that several other bridges collapsed for the same reason. To overcome unwanted vibrations and prevent structures from resonating during earthquakes, winds, ..., features and modifications such as dampers are used to stabilize these bridges. In this work, we use a minimum amount of dissipation to establish exponential decay- rate estimates to the following nonlocal evolution equation
$ u_{tt}(x,y,t)+\Delta^2 u(x,y,t) - \phi(u) u_{xx}- \left(\alpha(x, y) u_{xt}(x,y,t)\right)_x = 0, $
which models the deformation of the deck of either a footbridge or a suspension bridge.
Citation: Zayd Hajjej, Mohammad Al-Gharabli, Salim Messaoudi. Stability of a suspension bridge with a localized structural damping. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2021089
References:
[1]

M. Al-GwaizV. Benci and F. Gazzola, Bending and stretching energies in a rectangular plate modeling suspension bridges, Nonlinear Anal., 106 (2014), 181-734.  doi: 10.1016/j.na.2014.04.011.  Google Scholar

[2]

O. H. Ammann, T. von Karman and G. B. Woodruff, The failure of the Tacoma Narrows Bridge, Federal Works Agency, Washington D.C., (1941). Google Scholar

[3]

F. Bleich, C. B. McCullough, R. Rosecrans and G. S. Vincent, The mathematical theory of vibration in suspension bridges, U.S. Dept. of Commerce, Bureau of Public Roads, Washington D.C., (1950). Google Scholar

[4]

A. D. D. CavalcantiM. M. Cavalcanti and W. J. Corrêa et al, Uniform decay rates for a suspension bridge with locally distributed nonlinear damping, Journal of the Franklin Institute, 357 (2020), 2388-2419.  doi: 10.1016/j.jfranklin.2020.01.004.  Google Scholar

[5]

M. M. Cavalcanti, W. J. Corrêa, R. Fukuoka and Z. Hajjej, Stabilization of a suspension bridge with locally distributed damping, Math. Control Signals Syst., 30 (2018), Art. 20, 39 pp. doi: 10.1007/s00498-018-0226-0.  Google Scholar

[6]

A. Ferrero and F. Gazzola, A partially hinged rectangular plate as a model for suspension bridges, Discrete Contin. Dyn. Syst. A, 35 (2015), 5879-5908.  doi: 10.3934/dcds.2015.35.5879.  Google Scholar

[7]

V. Ferreira Jr.F. Gazzola and E. Moreira dos Santos, Instability of modes in a partially hinged rectangular plate, J. Differential Equations, 261 (2016), 6302-6340.  doi: 10.1016/j.jde.2016.08.037.  Google Scholar

[8]

F. Gazzola, Mathematical Models for Suspension Bridges: Nonlinear Structural Instability, Modeling, Simulation and Applications, 15 2015, Springer-Verlag. doi: 10.1007/978-3-319-15434-3.  Google Scholar

[9]

J. GloverA. C. Lazer and P. J. Mckenna, Existence and stability of of large scale nonlinear oscillation in suspension bridges, Z. Angew. Math. Phys., 40 (1989), 172-200.  doi: 10.1007/BF00944997.  Google Scholar

[10]

Z. Hajjej and S. A. Messaoudi, Stability of a suspension bridge with structural damping, Annales Polonici Mathematici, 125 (2020), 59-70.  doi: 10.4064/ap191023-4-2.  Google Scholar

[11]

A. C. Lazer and P. J. McKenna, Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis, SIAM Rev., 32 (1990), 537-578.  doi: 10.1137/1032120.  Google Scholar

[12]

J.-L. Lions, Contrôlabilité exacte des systèmes distribués, Masson, Paris, 1988.  Google Scholar

[13]

W. Liu and H. Zhuang, Global existence, asymptotic behavior and blow-up of solutions for a suspension bridge equation with nonlinear damping and source terms, Nonlinear Differ. Equ. Appl., 24 (2017), Paper No. 67, 35 pp. doi: 10.1007/s00030-017-0491-5.  Google Scholar

[14]

P. J. McKenna and W. Walter, Nonlinear oscillations in a suspension bridge, Arch. Rat. Mech. Anal., 98 (1987), 167-177.  doi: 10.1007/BF00251232.  Google Scholar

[15]

S. A. Messaoudi and S. E. Mukiawa, A suspension bridge problem: Existence and stability, Mathematics Across Contemporary Sciences, 2017,151–165. doi: 10.1007/978-3-319-46310-0_9.  Google Scholar

[16]

S. A. Messaoudi and S. E. Mukiawa, Existence and stability of fourth-order nonlinear plate problem, Nonauton. Dyn. Syst., 6 (2019), 81-98.  doi: 10.1515/msds-2019-0006.  Google Scholar

[17]

F. C. Smith and G. S. Vincent, Aerodynamic stability of suspension bridges: With special reference to the Tacoma Narrows Bridge, Part Ⅱ: Mathematical analysis, Investigation conducted by the Structural Research Laboratory, University of Washington, University of Washington Press, Seattle, (1950). Google Scholar

[18]

M. Tucsnak, Semi-internal stabilization for a non-linear Bernoulli-Euler equation, Mathematical Methods in the Applied Sciences, 19 (1996), 897-907.   Google Scholar

[19]

Y. Wang, Finite time blow-up and global solutions for fourth-order damped wave equations, Journal of Mathematical Analysis and Applications, 418 (2014), 713-733.  doi: 10.1016/j.jmaa.2014.04.015.  Google Scholar

show all references

References:
[1]

M. Al-GwaizV. Benci and F. Gazzola, Bending and stretching energies in a rectangular plate modeling suspension bridges, Nonlinear Anal., 106 (2014), 181-734.  doi: 10.1016/j.na.2014.04.011.  Google Scholar

[2]

O. H. Ammann, T. von Karman and G. B. Woodruff, The failure of the Tacoma Narrows Bridge, Federal Works Agency, Washington D.C., (1941). Google Scholar

[3]

F. Bleich, C. B. McCullough, R. Rosecrans and G. S. Vincent, The mathematical theory of vibration in suspension bridges, U.S. Dept. of Commerce, Bureau of Public Roads, Washington D.C., (1950). Google Scholar

[4]

A. D. D. CavalcantiM. M. Cavalcanti and W. J. Corrêa et al, Uniform decay rates for a suspension bridge with locally distributed nonlinear damping, Journal of the Franklin Institute, 357 (2020), 2388-2419.  doi: 10.1016/j.jfranklin.2020.01.004.  Google Scholar

[5]

M. M. Cavalcanti, W. J. Corrêa, R. Fukuoka and Z. Hajjej, Stabilization of a suspension bridge with locally distributed damping, Math. Control Signals Syst., 30 (2018), Art. 20, 39 pp. doi: 10.1007/s00498-018-0226-0.  Google Scholar

[6]

A. Ferrero and F. Gazzola, A partially hinged rectangular plate as a model for suspension bridges, Discrete Contin. Dyn. Syst. A, 35 (2015), 5879-5908.  doi: 10.3934/dcds.2015.35.5879.  Google Scholar

[7]

V. Ferreira Jr.F. Gazzola and E. Moreira dos Santos, Instability of modes in a partially hinged rectangular plate, J. Differential Equations, 261 (2016), 6302-6340.  doi: 10.1016/j.jde.2016.08.037.  Google Scholar

[8]

F. Gazzola, Mathematical Models for Suspension Bridges: Nonlinear Structural Instability, Modeling, Simulation and Applications, 15 2015, Springer-Verlag. doi: 10.1007/978-3-319-15434-3.  Google Scholar

[9]

J. GloverA. C. Lazer and P. J. Mckenna, Existence and stability of of large scale nonlinear oscillation in suspension bridges, Z. Angew. Math. Phys., 40 (1989), 172-200.  doi: 10.1007/BF00944997.  Google Scholar

[10]

Z. Hajjej and S. A. Messaoudi, Stability of a suspension bridge with structural damping, Annales Polonici Mathematici, 125 (2020), 59-70.  doi: 10.4064/ap191023-4-2.  Google Scholar

[11]

A. C. Lazer and P. J. McKenna, Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis, SIAM Rev., 32 (1990), 537-578.  doi: 10.1137/1032120.  Google Scholar

[12]

J.-L. Lions, Contrôlabilité exacte des systèmes distribués, Masson, Paris, 1988.  Google Scholar

[13]

W. Liu and H. Zhuang, Global existence, asymptotic behavior and blow-up of solutions for a suspension bridge equation with nonlinear damping and source terms, Nonlinear Differ. Equ. Appl., 24 (2017), Paper No. 67, 35 pp. doi: 10.1007/s00030-017-0491-5.  Google Scholar

[14]

P. J. McKenna and W. Walter, Nonlinear oscillations in a suspension bridge, Arch. Rat. Mech. Anal., 98 (1987), 167-177.  doi: 10.1007/BF00251232.  Google Scholar

[15]

S. A. Messaoudi and S. E. Mukiawa, A suspension bridge problem: Existence and stability, Mathematics Across Contemporary Sciences, 2017,151–165. doi: 10.1007/978-3-319-46310-0_9.  Google Scholar

[16]

S. A. Messaoudi and S. E. Mukiawa, Existence and stability of fourth-order nonlinear plate problem, Nonauton. Dyn. Syst., 6 (2019), 81-98.  doi: 10.1515/msds-2019-0006.  Google Scholar

[17]

F. C. Smith and G. S. Vincent, Aerodynamic stability of suspension bridges: With special reference to the Tacoma Narrows Bridge, Part Ⅱ: Mathematical analysis, Investigation conducted by the Structural Research Laboratory, University of Washington, University of Washington Press, Seattle, (1950). Google Scholar

[18]

M. Tucsnak, Semi-internal stabilization for a non-linear Bernoulli-Euler equation, Mathematical Methods in the Applied Sciences, 19 (1996), 897-907.   Google Scholar

[19]

Y. Wang, Finite time blow-up and global solutions for fourth-order damped wave equations, Journal of Mathematical Analysis and Applications, 418 (2014), 713-733.  doi: 10.1016/j.jmaa.2014.04.015.  Google Scholar

Figure 1.  Function $ \psi $
Figure 2.  Smooth function $ \eta. $
[1]

Ivana Bochicchio, Claudio Giorgi, Elena Vuk. On the viscoelastic coupled suspension bridge. Evolution Equations & Control Theory, 2014, 3 (3) : 373-397. doi: 10.3934/eect.2014.3.373

[2]

Kim Dang Phung. Decay of solutions of the wave equation with localized nonlinear damping and trapped rays. Mathematical Control & Related Fields, 2011, 1 (2) : 251-265. doi: 10.3934/mcrf.2011.1.251

[3]

Takeshi Taniguchi. Exponential boundary stabilization for nonlinear wave equations with localized damping and nonlinear boundary condition. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1571-1585. doi: 10.3934/cpaa.2017075

[4]

Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147

[5]

Gongwei Liu, Baowei Feng, Xinguang Yang. Longtime dynamics for a type of suspension bridge equation with past history and time delay. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4995-5013. doi: 10.3934/cpaa.2020224

[6]

A. F. Almeida, M. M. Cavalcanti, J. P. Zanchetta. Exponential decay for the coupled Klein-Gordon-Schrödinger equations with locally distributed damping. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2039-2061. doi: 10.3934/cpaa.2018097

[7]

Irena Lasiecka, Roberto Triggiani. Heat--structure interaction with viscoelastic damping: Analyticity with sharp analytic sector, exponential decay, fractional powers. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1515-1543. doi: 10.3934/cpaa.2016001

[8]

Jing Zhang. The analyticity and exponential decay of a Stokes-wave coupling system with viscoelastic damping in the variational framework. Evolution Equations & Control Theory, 2017, 6 (1) : 135-154. doi: 10.3934/eect.2017008

[9]

Vo Anh Khoa, Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence, blow-up and exponential decay of solutions for a porous-elastic system with damping and source terms. Evolution Equations & Control Theory, 2019, 8 (2) : 359-395. doi: 10.3934/eect.2019019

[10]

Ling Xu, Jianhua Huang, Qiaozhen Ma. Upper semicontinuity of random attractors for the stochastic non-autonomous suspension bridge equation with memory. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5959-5979. doi: 10.3934/dcdsb.2019115

[11]

Marco Campo, José R. Fernández, Maria Grazia Naso. A dynamic problem involving a coupled suspension bridge system: Numerical analysis and computational experiments. Evolution Equations & Control Theory, 2019, 8 (3) : 489-502. doi: 10.3934/eect.2019024

[12]

Suping Wang, Qiaozhen Ma. Existence of pullback attractors for the non-autonomous suspension bridge equation with time delay. Discrete & Continuous Dynamical Systems - B, 2020, 25 (4) : 1299-1316. doi: 10.3934/dcdsb.2019221

[13]

Peng Sun. Exponential decay of Lebesgue numbers. Discrete & Continuous Dynamical Systems, 2012, 32 (10) : 3773-3785. doi: 10.3934/dcds.2012.32.3773

[14]

To Fu Ma, Paulo Nicanor Seminario-Huertas. Attractors for semilinear wave equations with localized damping and external forces. Communications on Pure & Applied Analysis, 2020, 19 (4) : 2219-2233. doi: 10.3934/cpaa.2020097

[15]

Aníbal Rodríguez-Bernal, Enrique Zuazua. Parabolic singular limit of a wave equation with localized boundary damping. Discrete & Continuous Dynamical Systems, 1995, 1 (3) : 303-346. doi: 10.3934/dcds.1995.1.303

[16]

Louis Tebou. Stabilization of some elastodynamic systems with localized Kelvin-Voigt damping. Discrete & Continuous Dynamical Systems, 2016, 36 (12) : 7117-7136. doi: 10.3934/dcds.2016110

[17]

Denis Mercier, Virginie Régnier. Decay rate of the Timoshenko system with one boundary damping. Evolution Equations & Control Theory, 2019, 8 (2) : 423-445. doi: 10.3934/eect.2019021

[18]

Moez Daoulatli. Rates of decay for the wave systems with time dependent damping. Discrete & Continuous Dynamical Systems, 2011, 31 (2) : 407-443. doi: 10.3934/dcds.2011.31.407

[19]

Qing Chen, Zhong Tan. Time decay of solutions to the compressible Euler equations with damping. Kinetic & Related Models, 2014, 7 (4) : 605-619. doi: 10.3934/krm.2014.7.605

[20]

Eugenii Shustin. Exponential decay of oscillations in a multidimensional delay differential system. Conference Publications, 2003, 2003 (Special) : 809-816. doi: 10.3934/proc.2003.2003.809

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (103)
  • HTML views (130)
  • Cited by (0)

[Back to Top]