doi: 10.3934/dcdss.2021095
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Numerical methods preserving multiple Hamiltonians for stochastic Poisson systems

1. 

School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

2. 

Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849, USA

* Corresponding author: Yanzhao Cao

Received  December 2020 Revised  July 2021 Early access August 2021

Fund Project: The first and second authors are supported by NNSFC No. 11971458, No. 11471310

In this paper, we propose a class of numerical schemes for stochastic Poisson systems with multiple invariant Hamiltonians. The method is based on the average vector field discrete gradient and an orthogonal projection technique. The proposed schemes preserve all the invariant Hamiltonians of the stochastic Poisson systems simultaneously, with possibility of achieving high convergence orders in the meantime. We also prove that our numerical schemes preserve the Casimir functions of the systems under certain conditions. Numerical experiments verify the theoretical results and illustrate the effectiveness of our schemes.

Citation: Lijin Wang, Pengjun Wang, Yanzhao Cao. Numerical methods preserving multiple Hamiltonians for stochastic Poisson systems. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2021095
References:
[1]

L. BrugnanoM. CalvoJ. I. Montijano and L. Rández, Energy-preserving methods for Poisson systems, J. Comput. Appl. Math., 236 (2012), 3890-3904.  doi: 10.1016/j.cam.2012.02.033.  Google Scholar

[2]

D. Cohen and G. Dujardin, Energy-preserving integrators for stochastic Poisson systems, Commun. Math. Sci., 12 (2014), 1523-1539.  doi: 10.4310/CMS.2014.v12.n8.a7.  Google Scholar

[3]

D. Cohen and E. Hairer, Linear energy-preserving integrators for Poisson systems, BIT Numer. Math., 51 (2011), 91-101.  doi: 10.1007/s10543-011-0310-z.  Google Scholar

[4]

M. Dahlby, B. Owren and T. Yaguchi, Preserving multiple first integrals by discrete gradients, J. Phys. A: Math. Theor., 44 (2011), 305205. doi: 10.1088/1751-8113/44/30/305205.  Google Scholar

[5]

K. Engø and S. Faltinsen, Numerical integration of Lie-Poisson systems while preserving coadjoint orbits and energy, SIAM J. Numer. Anal., 39 (2001), 128-145.  doi: 10.1137/S0036142999364212.  Google Scholar

[6]

E. Faou and T. Lelièvre, Conservative stochastic differential equations: Mathematical and numerical analysis, Math. Comput., 78 (2009), 2047-2074.  doi: 10.1090/S0025-5718-09-02220-0.  Google Scholar

[7]

K. Feng and M. Qin, Symplectic Geometric Algorithms for Hamiltonian Systems, Springer-Verlag, Berlin Heidelberg, 2010. doi: 10.1007/978-3-642-01777-3.  Google Scholar

[8]

I. A. Garcia and B. Hernandez–Bermejo, Perturbed Euler top and bifurcation of limit cycles on invariant Casimir surfaces, Physica D, 239 (2010), 1665-1669.  doi: 10.1016/j.physd.2010.04.013.  Google Scholar

[9]

O. Gonzalez, Time integration and discrete Hamiltonian systems, J. Nonlinear Sci., 6 (1996), 449-467.  doi: 10.1007/BF02440162.  Google Scholar

[10]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations, Second Edition, Springer-Verlag Berlin Heidelberg, 2006.  Google Scholar

[11]

B. Hernández-Bermejo, Characterization, global analysis and integrability of a family of Poisson structures, Phys. Lett. A, 372 (2008), 1009-1017.  doi: 10.1016/j.physleta.2007.08.052.  Google Scholar

[12]

B. Hernández-Bermejo, Generalization of solutions of the Jacobi PDEs associated to time reparametrizations of Poisson systems, J. Math. Anal. Appl., 344 (2008), 655-666.  doi: 10.1016/j.jmaa.2008.02.061.  Google Scholar

[13]

J. Hietarinta, A search for integrable two-dimensional Hamiltonian systems with polynomial potential, Phys. Lett. A, 96 (1983), 273-278.  doi: 10.1016/0375-9601(83)90178-0.  Google Scholar

[14]

J. Hong, L. Ji, X. Wang and J. Zhang, Stochastic K-symplectic integrators for stochastic non-canonical Hamiltonian systems and applications to the Lotka-Volterra model, arXiv preprint arXiv: 1711.03258, (2017). Google Scholar

[15]

J. HongJ. RuanL. Sun and L. Wang, Structure-preserving numerical methods for stochastic Poisson systems, Commun. Comput. Phys., 29 (2021), 802-830.  doi: 10.4208/cicp.OA-2019-0084.  Google Scholar

[16]

J. HongS. Zhai and J. Zhang, Discrete gradient approach to stochastic differential equations with a conserved quantity, SIAM J. Numer. Anal., 49 (2011), 2017-2038.  doi: 10.1137/090771880.  Google Scholar

[17]

P. E. Klöden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-662-12616-5.  Google Scholar

[18]

P. E. Klöden, E. Platen and H. Schurz, Numerical Solution of SDE Through Computer Experiments, Springer-Verlag, Berlin, 1994. doi: 10.1007/978-3-642-57913-4.  Google Scholar

[19]

X. LiQ. Ma and X. Ding, High-order energy-preserving methods for stochastic Poisson systems, East Asian J. Appl. Math., 9 (2019), 465-484.  doi: 10.4208/eajam.290518.310718.  Google Scholar

[20]

X. LiC. ZhangQ. Ma and X. Ding, Discrete gradient methods and linear projection methods for preserving a conserved quantity of stochastic differential equations, Int. J. Comput. Math., 95 (2018), 2511-2524.  doi: 10.1080/00207160.2017.1408803.  Google Scholar

[21]

X. LiC. ZhangQ. Ma and X. Ding, Arbitrary high-order EQUIP methods for stochastic canonical Hamiltonian systems, Taiwan. J. Math., 23 (2019), 703-725.  doi: 10.11650/tjm/180803.  Google Scholar

[22]

S. Lie, Zur Theorie der Transformationsgruppen, Christ. Forth. Aar. 1888, Nr. 13, Christiania 1888; Gesammelte Abh., 5,553–557. Google Scholar

[23]

R. I. McLachlanG. R. W. Quispel and N. Robidoux, Geometric integration using discrete gradients, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 357 (1999), 1021-1045.  doi: 10.1098/rsta.1999.0363.  Google Scholar

[24]

L. MeiL. Huang and S. Huang, Exponential integrators with quadratic energy preservation for linear Poisson systems, J. Comput. Phys., 387 (2019), 446-454.  doi: 10.1016/j.jcp.2019.03.005.  Google Scholar

[25]

G. N. Milstein, Numerical Integration of Stochastic Differential Equations, Kluwer Academic Publishers Group, Dordrecht, 1995 doi: 10.1007/978-94-015-8455-5.  Google Scholar

[26]

T. Misawa, Energy conservative stochastic difference scheme for stochastic Hamilton dynamical systems, Jap. J. Ind. Appl. Math., 17 (2000), 119. doi: 10.1007/BF03167340.  Google Scholar

[27]

Y. Miyatake, A derivation of energy-preserving exponentially-fitted integrators for Poisson systems, Comput. Phys. Commun., 187 (2015), 156-161.  doi: 10.1016/j.cpc.2014.11.003.  Google Scholar

[28]

Y. Miyatake, A fourth-order energy-preserving exponentially-fitted integrator for Poisson systems, AIP Conf. Proc., AIP Publishing LLC, 1648 (2015), 180004. doi: 10.1063/1.4912467.  Google Scholar

[29]

G. R. W. Quispel and R. I. McLachlan, Special issue on geometric numerical integration of differential equations, J. Phys. A: Math. Gen., 39 (2006), 5251-5651.   Google Scholar

[30]

B. Wang and X. Wu, Functionally-fitted energy-preserving integrators for Poisson systems, J. Comput. Phys., 364 (2018), 137-152.  doi: 10.1016/j.jcp.2018.03.015.  Google Scholar

[31]

W. Zhu and M. Qin, Poisson schemes for Hamiltonian systems on Poisson manifolds, Computers. Math. Applic., 27 (1994), 7-16.  doi: 10.1016/0898-1221(94)90081-7.  Google Scholar

show all references

References:
[1]

L. BrugnanoM. CalvoJ. I. Montijano and L. Rández, Energy-preserving methods for Poisson systems, J. Comput. Appl. Math., 236 (2012), 3890-3904.  doi: 10.1016/j.cam.2012.02.033.  Google Scholar

[2]

D. Cohen and G. Dujardin, Energy-preserving integrators for stochastic Poisson systems, Commun. Math. Sci., 12 (2014), 1523-1539.  doi: 10.4310/CMS.2014.v12.n8.a7.  Google Scholar

[3]

D. Cohen and E. Hairer, Linear energy-preserving integrators for Poisson systems, BIT Numer. Math., 51 (2011), 91-101.  doi: 10.1007/s10543-011-0310-z.  Google Scholar

[4]

M. Dahlby, B. Owren and T. Yaguchi, Preserving multiple first integrals by discrete gradients, J. Phys. A: Math. Theor., 44 (2011), 305205. doi: 10.1088/1751-8113/44/30/305205.  Google Scholar

[5]

K. Engø and S. Faltinsen, Numerical integration of Lie-Poisson systems while preserving coadjoint orbits and energy, SIAM J. Numer. Anal., 39 (2001), 128-145.  doi: 10.1137/S0036142999364212.  Google Scholar

[6]

E. Faou and T. Lelièvre, Conservative stochastic differential equations: Mathematical and numerical analysis, Math. Comput., 78 (2009), 2047-2074.  doi: 10.1090/S0025-5718-09-02220-0.  Google Scholar

[7]

K. Feng and M. Qin, Symplectic Geometric Algorithms for Hamiltonian Systems, Springer-Verlag, Berlin Heidelberg, 2010. doi: 10.1007/978-3-642-01777-3.  Google Scholar

[8]

I. A. Garcia and B. Hernandez–Bermejo, Perturbed Euler top and bifurcation of limit cycles on invariant Casimir surfaces, Physica D, 239 (2010), 1665-1669.  doi: 10.1016/j.physd.2010.04.013.  Google Scholar

[9]

O. Gonzalez, Time integration and discrete Hamiltonian systems, J. Nonlinear Sci., 6 (1996), 449-467.  doi: 10.1007/BF02440162.  Google Scholar

[10]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations, Second Edition, Springer-Verlag Berlin Heidelberg, 2006.  Google Scholar

[11]

B. Hernández-Bermejo, Characterization, global analysis and integrability of a family of Poisson structures, Phys. Lett. A, 372 (2008), 1009-1017.  doi: 10.1016/j.physleta.2007.08.052.  Google Scholar

[12]

B. Hernández-Bermejo, Generalization of solutions of the Jacobi PDEs associated to time reparametrizations of Poisson systems, J. Math. Anal. Appl., 344 (2008), 655-666.  doi: 10.1016/j.jmaa.2008.02.061.  Google Scholar

[13]

J. Hietarinta, A search for integrable two-dimensional Hamiltonian systems with polynomial potential, Phys. Lett. A, 96 (1983), 273-278.  doi: 10.1016/0375-9601(83)90178-0.  Google Scholar

[14]

J. Hong, L. Ji, X. Wang and J. Zhang, Stochastic K-symplectic integrators for stochastic non-canonical Hamiltonian systems and applications to the Lotka-Volterra model, arXiv preprint arXiv: 1711.03258, (2017). Google Scholar

[15]

J. HongJ. RuanL. Sun and L. Wang, Structure-preserving numerical methods for stochastic Poisson systems, Commun. Comput. Phys., 29 (2021), 802-830.  doi: 10.4208/cicp.OA-2019-0084.  Google Scholar

[16]

J. HongS. Zhai and J. Zhang, Discrete gradient approach to stochastic differential equations with a conserved quantity, SIAM J. Numer. Anal., 49 (2011), 2017-2038.  doi: 10.1137/090771880.  Google Scholar

[17]

P. E. Klöden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-662-12616-5.  Google Scholar

[18]

P. E. Klöden, E. Platen and H. Schurz, Numerical Solution of SDE Through Computer Experiments, Springer-Verlag, Berlin, 1994. doi: 10.1007/978-3-642-57913-4.  Google Scholar

[19]

X. LiQ. Ma and X. Ding, High-order energy-preserving methods for stochastic Poisson systems, East Asian J. Appl. Math., 9 (2019), 465-484.  doi: 10.4208/eajam.290518.310718.  Google Scholar

[20]

X. LiC. ZhangQ. Ma and X. Ding, Discrete gradient methods and linear projection methods for preserving a conserved quantity of stochastic differential equations, Int. J. Comput. Math., 95 (2018), 2511-2524.  doi: 10.1080/00207160.2017.1408803.  Google Scholar

[21]

X. LiC. ZhangQ. Ma and X. Ding, Arbitrary high-order EQUIP methods for stochastic canonical Hamiltonian systems, Taiwan. J. Math., 23 (2019), 703-725.  doi: 10.11650/tjm/180803.  Google Scholar

[22]

S. Lie, Zur Theorie der Transformationsgruppen, Christ. Forth. Aar. 1888, Nr. 13, Christiania 1888; Gesammelte Abh., 5,553–557. Google Scholar

[23]

R. I. McLachlanG. R. W. Quispel and N. Robidoux, Geometric integration using discrete gradients, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 357 (1999), 1021-1045.  doi: 10.1098/rsta.1999.0363.  Google Scholar

[24]

L. MeiL. Huang and S. Huang, Exponential integrators with quadratic energy preservation for linear Poisson systems, J. Comput. Phys., 387 (2019), 446-454.  doi: 10.1016/j.jcp.2019.03.005.  Google Scholar

[25]

G. N. Milstein, Numerical Integration of Stochastic Differential Equations, Kluwer Academic Publishers Group, Dordrecht, 1995 doi: 10.1007/978-94-015-8455-5.  Google Scholar

[26]

T. Misawa, Energy conservative stochastic difference scheme for stochastic Hamilton dynamical systems, Jap. J. Ind. Appl. Math., 17 (2000), 119. doi: 10.1007/BF03167340.  Google Scholar

[27]

Y. Miyatake, A derivation of energy-preserving exponentially-fitted integrators for Poisson systems, Comput. Phys. Commun., 187 (2015), 156-161.  doi: 10.1016/j.cpc.2014.11.003.  Google Scholar

[28]

Y. Miyatake, A fourth-order energy-preserving exponentially-fitted integrator for Poisson systems, AIP Conf. Proc., AIP Publishing LLC, 1648 (2015), 180004. doi: 10.1063/1.4912467.  Google Scholar

[29]

G. R. W. Quispel and R. I. McLachlan, Special issue on geometric numerical integration of differential equations, J. Phys. A: Math. Gen., 39 (2006), 5251-5651.   Google Scholar

[30]

B. Wang and X. Wu, Functionally-fitted energy-preserving integrators for Poisson systems, J. Comput. Phys., 364 (2018), 137-152.  doi: 10.1016/j.jcp.2018.03.015.  Google Scholar

[31]

W. Zhu and M. Qin, Poisson schemes for Hamiltonian systems on Poisson manifolds, Computers. Math. Applic., 27 (1994), 7-16.  doi: 10.1016/0898-1221(94)90081-7.  Google Scholar

Figure 1.  Root mean-square convergence orders of the Milstein scheme, the Klöden scheme, the P-Milstein scheme, and the P-Klöden scheme
Figure 2.  Evolution of $ H^0(y),H^1(y) $ by the Milstein scheme and the P-Milstein scheme for system (32)
Figure 3.  Evolution of $ y^1 $ by the Milstein scheme and the P-Milstein scheme
Figure 4.  Evolution of the Casimir function by the Milstein scheme and the P-Milstein scheme
Figure 5.  Root mean-square convergence orders of the Euler scheme, the Milstein scheme, the P-Euler scheme, and the P-Milstein scheme
Figure 6.  Evolution of $ H^0(X),\,\,H^1(X) $ by the Milstein scheme and the P-Milstein scheme for the system (34)
Figure 7.  A sample path of $ y^1 $ produced by the Milstein scheme and the P-Milstein scheme for the system (34)
Figure 8.  Root mean-square convergence orders of the Milstein scheme and the P-Milstein scheme
Figure 9.  Evolution of $ H^0(y) $ and $ H^1(y) $ by the Milstein scheme and the P-Milstein scheme for system (35)
Figure 10.  Evolution of $ y^2 $ by the Milstein scheme and the P-Milstein scheme for the system (35)
[1]

Chuchu Chen, Jialin Hong. Mean-square convergence of numerical approximations for a class of backward stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2051-2067. doi: 10.3934/dcdsb.2013.18.2051

[2]

Evelyn Buckwar, Girolama Notarangelo. A note on the analysis of asymptotic mean-square stability properties for systems of linear stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1521-1531. doi: 10.3934/dcdsb.2013.18.1521

[3]

Theresa Lange, Wilhelm Stannat. Mean field limit of Ensemble Square Root filters - discrete and continuous time. Foundations of Data Science, 2021, 3 (3) : 563-588. doi: 10.3934/fods.2021003

[4]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[5]

Hailong Zhu, Jifeng Chu, Weinian Zhang. Mean-square almost automorphic solutions for stochastic differential equations with hyperbolicity. Discrete & Continuous Dynamical Systems, 2018, 38 (4) : 1935-1953. doi: 10.3934/dcds.2018078

[6]

Thai Son Doan, Martin Rasmussen, Peter E. Kloeden. The mean-square dichotomy spectrum and a bifurcation to a mean-square attractor. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 875-887. doi: 10.3934/dcdsb.2015.20.875

[7]

Fuke Wu, Peter E. Kloeden. Mean-square random attractors of stochastic delay differential equations with random delay. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1715-1734. doi: 10.3934/dcdsb.2013.18.1715

[8]

Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129

[9]

Toshiko Ogiwara, Hiroshi Matano. Monotonicity and convergence results in order-preserving systems in the presence of symmetry. Discrete & Continuous Dynamical Systems, 1999, 5 (1) : 1-34. doi: 10.3934/dcds.1999.5.1

[10]

Ziheng Chen, Siqing Gan, Xiaojie Wang. Mean-square approximations of Lévy noise driven SDEs with super-linearly growing diffusion and jump coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4513-4545. doi: 10.3934/dcdsb.2019154

[11]

Pablo Pedregal. Fully explicit quasiconvexification of the mean-square deviation of the gradient of the state in optimal design. Electronic Research Announcements, 2001, 7: 72-78.

[12]

Richard A. Norton, David I. McLaren, G. R. W. Quispel, Ari Stern, Antonella Zanna. Projection methods and discrete gradient methods for preserving first integrals of ODEs. Discrete & Continuous Dynamical Systems, 2015, 35 (5) : 2079-2098. doi: 10.3934/dcds.2015.35.2079

[13]

Quan Hai, Shutang Liu. Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3097-3118. doi: 10.3934/dcdsb.2020221

[14]

Lijin Wang, Jialin Hong. Generating functions for stochastic symplectic methods. Discrete & Continuous Dynamical Systems, 2014, 34 (3) : 1211-1228. doi: 10.3934/dcds.2014.34.1211

[15]

Josu Doncel, Nicolas Gast, Bruno Gaujal. Discrete mean field games: Existence of equilibria and convergence. Journal of Dynamics & Games, 2019, 6 (3) : 221-239. doi: 10.3934/jdg.2019016

[16]

Richard A. Norton, G. R. W. Quispel. Discrete gradient methods for preserving a first integral of an ordinary differential equation. Discrete & Continuous Dynamical Systems, 2014, 34 (3) : 1147-1170. doi: 10.3934/dcds.2014.34.1147

[17]

Vincenzo Ambrosio, Giovanni Molica Bisci, Dušan Repovš. Nonlinear equations involving the square root of the Laplacian. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 151-170. doi: 10.3934/dcdss.2019011

[18]

Wei Wang, Kai Liu, Xiulian Wang. Sensitivity to small delays of mean square stability for stochastic neutral evolution equations. Communications on Pure & Applied Analysis, 2020, 19 (4) : 2403-2418. doi: 10.3934/cpaa.2020105

[19]

Zhen Li, Jicheng Liu. Synchronization for stochastic differential equations with nonlinear multiplicative noise in the mean square sense. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5709-5736. doi: 10.3934/dcdsb.2019103

[20]

Sahani Pathiraja, Sebastian Reich. Discrete gradients for computational Bayesian inference. Journal of Computational Dynamics, 2019, 6 (2) : 385-400. doi: 10.3934/jcd.2019019

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (126)
  • HTML views (139)
  • Cited by (0)

Other articles
by authors

[Back to Top]