
- Previous Article
- DCDS-S Home
- This Issue
-
Next Article
Augmented Gaussian random field: Theory and computation
Effective Mori-Zwanzig equation for the reduced-order modeling of stochastic systems
1. | Department of Applied Mathematics, University of California, Merced, Merced (CA) 95343, USA |
2. | Department of Computational Mathematics, Michigan State University, East Lansing (MI) 48824, USA |
Built upon the hypoelliptic analysis of the effective Mori-Zwanzig (EMZ) equation for observables of stochastic dynamical systems, we show that the obtained semigroup estimates for the EMZ equation can be used to derive prior estimates of the observable statistics for systems in the equilibrium and nonequilibrium state. In addition, we introduce both first-principle and data-driven methods to approximate the EMZ memory kernel and prove the convergence of the data-driven parametrization schemes using the regularity estimate of the memory kernel. The analysis results are validated numerically via the Monte-Carlo simulation of the Langevin dynamics for a Fermi-Pasta-Ulam chain model. With the same example, we also show the effectiveness of the proposed memory kernel approximation methods.
References:
[1] |
A. D. Baczewski and S. D. Bond, Numerical integration of the extended variable generalized Langevin equation with a positive Prony representable memory kernel, J. Chem. Phys., 139 (2013), 044107.
doi: 10.1063/1.4815917. |
[2] |
M. Berkowitz, J. D. Morgan, D. J. Kouri and J. A. McCammon,
Memory kernels from molecular dynamics, J. Chem. Phys., 75 (1981), 2462-2463.
|
[3] |
A. J. Chorin, O. H. Hald and R. Kupferman,
Optimal prediction and the Mori-Zwanzig representation of irreversible processes, Proc. Natl. Acad. Sci. USA, 97 (2000), 2968-2973.
doi: 10.1073/pnas.97.7.2968. |
[4] |
W. Chu and X. Li,
The Mori–Zwanzig formalism for the derivation of a fluctuating heat conduction model from molecular dynamics, Commun Math Sci., 17 (2019), 539-563.
doi: 10.4310/CMS.2019.v17.n2.a10. |
[5] |
J. M. Dominy and D. Venturi, Duality and conditional expectations in the Nakajima-Mori-Zwanzig formulation, J. Math. Phys., 58 (2017), 082701.
doi: 10.1063/1.4997015. |
[6] |
J.-P. Eckmann and M. Hairer,
Non-equilibrium statistical mechanics of strongly anharmonic chains of oscillators, Commun. Math. Phys., 212 (2000), 105-164.
doi: 10.1007/s002200000216. |
[7] |
J.-P. Eckmann and M. Hairer,
Spectral properties of hypoelliptic operators, Commun. Math. Phys., 235 (2003), 233-253.
doi: 10.1007/s00220-003-0805-9. |
[8] |
J.-P. Eckmann, C.-A. Pillet and L. Rey-Bellet,
Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures, Commun. Math. Phys., 201 (1999), 657-697.
doi: 10.1007/s002200050572. |
[9] |
P. Español, Hydrodynamics from dissipative particle dynamics, Phys. Rev. E, 52 (1995), 1734. |
[10] |
P. Español and P. Warren, Statistical mechanics of dissipative particle dynamics, EPL, 30 (1995), 191. |
[11] |
S. K. J. Falkena, C. Quinn, J. Sieber, J. Frank and H. A. Dijkstra, Derivation of delay equation climate models using the Mori- Zwanzig formalism, Proc. R. Soc. A, 475 (2019), 20190075, 21 pp.
doi: 10.1098/rspa.2019.0075. |
[12] |
D. Funaro, Polynomial Approximation of Differential Equations, volume 8, Springer-Verlag, Berlin, 1992. |
[13] |
D. Givon, R. Kupferman and O. H. Hald,
Existence proof for orthogonal dynamics and the Mori-Zwanzig formalism, Isr. J. Math., 145 (2005), 221-241.
doi: 10.1007/BF02786691. |
[14] |
F. Grogan, H. Lei, X. Li and N. A. Baker,
Data-driven molecular modeling with the generalized Langevin equation, J. Comput. Phys., 418 (2020), 109633-109641.
doi: 10.1016/j.jcp.2020.109633. |
[15] |
B. Helffer and F. Nier, Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians, Springer, 2005.
doi: 10.1007/b104762. |
[16] |
F. Hérau and F. Nier,
Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential, Arch. Ration. Mech. Anal, 171 (2004), 151-218.
doi: 10.1007/s00205-003-0276-3. |
[17] |
T. Hudson and X. H. Li,
Coarse-graining of overdamped Langevin dynamics via the Mori–Zwanzig formalism, Multiscale Modeling & Simulation, 18 (2020), 1113-1135.
doi: 10.1137/18M1222533. |
[18] |
P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, volume 23, Springer-Verlag, Berlin, 1992.
doi: 10.1007/978-3-662-12616-5. |
[19] |
H. Lei, N. A. Baker and X. Li,
Data-driven parameterization of the generalized Langevin equation, Proc. Natl. Acad. Sci., 113 (2016), 14183-14188.
doi: 10.1073/pnas.1609587113. |
[20] |
Z. Li, X. Bian, X. Li and G. E. Karniadakis, Incorporation of memory effects in coarse-grained modeling via the Mori-Zwanzig formalism, J. Chem. Phys., 143 (2015), 243128.
doi: 10.1063/1.4935490. |
[21] |
Z. Li, H. S. Lee, E. Darve and G. E. Karniadakis, Computing the non-Markovian coarse-grained interactions derived from the Mori-Zwanzig formalism in molecular systems: Application to polymer melts, J. Chem. Phys., 146 (2017), 014104.
doi: 10.1063/1.4973347. |
[22] |
K. K. Lin and F. Lu, Data-driven model reduction, Wiener projections, and the Mori-Zwanzig formalism, J. Comput. Phys., 424 (2021), Paper No. 109864, 33 pp. arXiv preprint arXiv: 1908.07725, 2019.
doi: 10.1016/j.jcp.2020.109864. |
[23] |
F. Lu, K. K. Lin and A. J. Chorin,
Data-based stochastic model reduction for the Kuramoto–Sivashinsky equation, Physica D, 340 (2017), 46-57.
doi: 10.1016/j.physd.2016.09.007. |
[24] |
H. Mori,
Transport, collective motion, and Brownian motion, Prog. Theor. Phys., 33 (1965), 423-455.
doi: 10.1143/PTP.33.423. |
[25] |
T. Morita, H. Mori and K. T. Mashiyama,
Contraction of state variables in Non-Equilibrium open systems. II, Prog. Theor. Phys., 64 (1980), 500-521.
doi: 10.1143/PTP.64.500. |
[26] |
E. J. Parish and K. Duraisamy, Non-Markovian closure models for large eddy simulations using the Mori-Zwanzig formalism, Phys. Rev. Fluids, 2 (2017), 014604.
doi: 10.1103/PhysRevFluids.2.014604. |
[27] |
G. A. Pavliotis, Stochastic Processes and Applications: Diffusion processes, the Fokker-Planck and Langevin Equations, volume 60., Springer, 2014.
doi: 10.1007/978-1-4939-1323-7. |
[28] |
H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications, Second edition. Springer Series in Synergetics, 18. Springer-Verlag, Berlin, 1989.
doi: 10.1007/978-3-642-61544-3. |
[29] |
P. Stinis,
Stochastic optimal prediction for the Kuramoto–Sivashinsky equation, Multiscale Modeling & Simulation, 2 (2004), 580-612.
doi: 10.1137/030600424. |
[30] |
R. Tibshirani,
Regression shrinkage and selection via the Lasso, J. Royal Stat. Soc. Ser. B, 58 (1996), 267-288.
doi: 10.1111/j.2517-6161.1996.tb02080.x. |
[31] |
D. Venturi and G. E. Karniadakis,
Convolutionless Nakajima-Zwanzig equations for stochastic analysis in nonlinear dynamical systems, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 470 (2014), 1-20.
doi: 10.1098/rspa.2013.0754. |
[32] |
D. Venturi, T. P. Sapsis, H. Cho and G. E. Karniadakis,
A computable evolution equation for the joint response-excitation probability density function of stochastic dynamical systems, Proc. R. Soc. A, 468 (2012), 759-783.
doi: 10.1098/rspa.2011.0186. |
[33] |
Y. Yoshimoto, I. Kinefuchi, T. Mima, A. Fukushima, T. Tokumasu and S. Takagi, Bottom-up construction of interaction models of non-Markovian dissipative particle dynamics, Phys. Rev. E, 88 (2013), 043305.
doi: 10.1103/PhysRevE.88.043305. |
[34] |
Y. Zhu, J. M. Dominy and D. Venturi, On the estimation of the Mori-Zwanzig memory integral, J. Math. Phys., 59 (2018), 103501.
doi: 10.1063/1.5003467. |
[35] |
Y. Zhu, H. Lei and C. Kim, Generalized second fluctuation-dissipation theorem in the nonequilibrium steady state: Theory and applications, arXiv preprint arXiv: 2104.05222, 2021. |
[36] |
Y. Zhu and D. Venturi,
Faber approximation of the Mori-Zwanzig equation, J. Comp. Phys., 372 (2018), 694-718.
doi: 10.1016/j.jcp.2018.06.047. |
[37] |
Y. Zhu and D. Venturi,
Generalized langevin equations for systems with local interactions, J. Stat. Phys., 178 (2020), 1217-1247.
doi: 10.1007/s10955-020-02499-y. |
[38] |
Y. Zhu and D. Venturi, Hypoellipticity and the Mori-Zwanzig formulation of stochastic differential equations, arXiv preprint arXiv: 2001.04565, 2020. |
[39] |
R. Zwanzig, Memory effects in irreversible thermodynamics, Phys. Rev., 124 (1961), 983.
doi: 10.1103/PhysRev.124.983. |
[40] |
R. Zwanzig,
Nonlinear generalized Langevin equations, J. Stat. Phys., 9 (1973), 215-220.
doi: 10.1007/BF01008729. |
show all references
References:
[1] |
A. D. Baczewski and S. D. Bond, Numerical integration of the extended variable generalized Langevin equation with a positive Prony representable memory kernel, J. Chem. Phys., 139 (2013), 044107.
doi: 10.1063/1.4815917. |
[2] |
M. Berkowitz, J. D. Morgan, D. J. Kouri and J. A. McCammon,
Memory kernels from molecular dynamics, J. Chem. Phys., 75 (1981), 2462-2463.
|
[3] |
A. J. Chorin, O. H. Hald and R. Kupferman,
Optimal prediction and the Mori-Zwanzig representation of irreversible processes, Proc. Natl. Acad. Sci. USA, 97 (2000), 2968-2973.
doi: 10.1073/pnas.97.7.2968. |
[4] |
W. Chu and X. Li,
The Mori–Zwanzig formalism for the derivation of a fluctuating heat conduction model from molecular dynamics, Commun Math Sci., 17 (2019), 539-563.
doi: 10.4310/CMS.2019.v17.n2.a10. |
[5] |
J. M. Dominy and D. Venturi, Duality and conditional expectations in the Nakajima-Mori-Zwanzig formulation, J. Math. Phys., 58 (2017), 082701.
doi: 10.1063/1.4997015. |
[6] |
J.-P. Eckmann and M. Hairer,
Non-equilibrium statistical mechanics of strongly anharmonic chains of oscillators, Commun. Math. Phys., 212 (2000), 105-164.
doi: 10.1007/s002200000216. |
[7] |
J.-P. Eckmann and M. Hairer,
Spectral properties of hypoelliptic operators, Commun. Math. Phys., 235 (2003), 233-253.
doi: 10.1007/s00220-003-0805-9. |
[8] |
J.-P. Eckmann, C.-A. Pillet and L. Rey-Bellet,
Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures, Commun. Math. Phys., 201 (1999), 657-697.
doi: 10.1007/s002200050572. |
[9] |
P. Español, Hydrodynamics from dissipative particle dynamics, Phys. Rev. E, 52 (1995), 1734. |
[10] |
P. Español and P. Warren, Statistical mechanics of dissipative particle dynamics, EPL, 30 (1995), 191. |
[11] |
S. K. J. Falkena, C. Quinn, J. Sieber, J. Frank and H. A. Dijkstra, Derivation of delay equation climate models using the Mori- Zwanzig formalism, Proc. R. Soc. A, 475 (2019), 20190075, 21 pp.
doi: 10.1098/rspa.2019.0075. |
[12] |
D. Funaro, Polynomial Approximation of Differential Equations, volume 8, Springer-Verlag, Berlin, 1992. |
[13] |
D. Givon, R. Kupferman and O. H. Hald,
Existence proof for orthogonal dynamics and the Mori-Zwanzig formalism, Isr. J. Math., 145 (2005), 221-241.
doi: 10.1007/BF02786691. |
[14] |
F. Grogan, H. Lei, X. Li and N. A. Baker,
Data-driven molecular modeling with the generalized Langevin equation, J. Comput. Phys., 418 (2020), 109633-109641.
doi: 10.1016/j.jcp.2020.109633. |
[15] |
B. Helffer and F. Nier, Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians, Springer, 2005.
doi: 10.1007/b104762. |
[16] |
F. Hérau and F. Nier,
Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential, Arch. Ration. Mech. Anal, 171 (2004), 151-218.
doi: 10.1007/s00205-003-0276-3. |
[17] |
T. Hudson and X. H. Li,
Coarse-graining of overdamped Langevin dynamics via the Mori–Zwanzig formalism, Multiscale Modeling & Simulation, 18 (2020), 1113-1135.
doi: 10.1137/18M1222533. |
[18] |
P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, volume 23, Springer-Verlag, Berlin, 1992.
doi: 10.1007/978-3-662-12616-5. |
[19] |
H. Lei, N. A. Baker and X. Li,
Data-driven parameterization of the generalized Langevin equation, Proc. Natl. Acad. Sci., 113 (2016), 14183-14188.
doi: 10.1073/pnas.1609587113. |
[20] |
Z. Li, X. Bian, X. Li and G. E. Karniadakis, Incorporation of memory effects in coarse-grained modeling via the Mori-Zwanzig formalism, J. Chem. Phys., 143 (2015), 243128.
doi: 10.1063/1.4935490. |
[21] |
Z. Li, H. S. Lee, E. Darve and G. E. Karniadakis, Computing the non-Markovian coarse-grained interactions derived from the Mori-Zwanzig formalism in molecular systems: Application to polymer melts, J. Chem. Phys., 146 (2017), 014104.
doi: 10.1063/1.4973347. |
[22] |
K. K. Lin and F. Lu, Data-driven model reduction, Wiener projections, and the Mori-Zwanzig formalism, J. Comput. Phys., 424 (2021), Paper No. 109864, 33 pp. arXiv preprint arXiv: 1908.07725, 2019.
doi: 10.1016/j.jcp.2020.109864. |
[23] |
F. Lu, K. K. Lin and A. J. Chorin,
Data-based stochastic model reduction for the Kuramoto–Sivashinsky equation, Physica D, 340 (2017), 46-57.
doi: 10.1016/j.physd.2016.09.007. |
[24] |
H. Mori,
Transport, collective motion, and Brownian motion, Prog. Theor. Phys., 33 (1965), 423-455.
doi: 10.1143/PTP.33.423. |
[25] |
T. Morita, H. Mori and K. T. Mashiyama,
Contraction of state variables in Non-Equilibrium open systems. II, Prog. Theor. Phys., 64 (1980), 500-521.
doi: 10.1143/PTP.64.500. |
[26] |
E. J. Parish and K. Duraisamy, Non-Markovian closure models for large eddy simulations using the Mori-Zwanzig formalism, Phys. Rev. Fluids, 2 (2017), 014604.
doi: 10.1103/PhysRevFluids.2.014604. |
[27] |
G. A. Pavliotis, Stochastic Processes and Applications: Diffusion processes, the Fokker-Planck and Langevin Equations, volume 60., Springer, 2014.
doi: 10.1007/978-1-4939-1323-7. |
[28] |
H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications, Second edition. Springer Series in Synergetics, 18. Springer-Verlag, Berlin, 1989.
doi: 10.1007/978-3-642-61544-3. |
[29] |
P. Stinis,
Stochastic optimal prediction for the Kuramoto–Sivashinsky equation, Multiscale Modeling & Simulation, 2 (2004), 580-612.
doi: 10.1137/030600424. |
[30] |
R. Tibshirani,
Regression shrinkage and selection via the Lasso, J. Royal Stat. Soc. Ser. B, 58 (1996), 267-288.
doi: 10.1111/j.2517-6161.1996.tb02080.x. |
[31] |
D. Venturi and G. E. Karniadakis,
Convolutionless Nakajima-Zwanzig equations for stochastic analysis in nonlinear dynamical systems, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 470 (2014), 1-20.
doi: 10.1098/rspa.2013.0754. |
[32] |
D. Venturi, T. P. Sapsis, H. Cho and G. E. Karniadakis,
A computable evolution equation for the joint response-excitation probability density function of stochastic dynamical systems, Proc. R. Soc. A, 468 (2012), 759-783.
doi: 10.1098/rspa.2011.0186. |
[33] |
Y. Yoshimoto, I. Kinefuchi, T. Mima, A. Fukushima, T. Tokumasu and S. Takagi, Bottom-up construction of interaction models of non-Markovian dissipative particle dynamics, Phys. Rev. E, 88 (2013), 043305.
doi: 10.1103/PhysRevE.88.043305. |
[34] |
Y. Zhu, J. M. Dominy and D. Venturi, On the estimation of the Mori-Zwanzig memory integral, J. Math. Phys., 59 (2018), 103501.
doi: 10.1063/1.5003467. |
[35] |
Y. Zhu, H. Lei and C. Kim, Generalized second fluctuation-dissipation theorem in the nonequilibrium steady state: Theory and applications, arXiv preprint arXiv: 2104.05222, 2021. |
[36] |
Y. Zhu and D. Venturi,
Faber approximation of the Mori-Zwanzig equation, J. Comp. Phys., 372 (2018), 694-718.
doi: 10.1016/j.jcp.2018.06.047. |
[37] |
Y. Zhu and D. Venturi,
Generalized langevin equations for systems with local interactions, J. Stat. Phys., 178 (2020), 1217-1247.
doi: 10.1007/s10955-020-02499-y. |
[38] |
Y. Zhu and D. Venturi, Hypoellipticity and the Mori-Zwanzig formulation of stochastic differential equations, arXiv preprint arXiv: 2001.04565, 2020. |
[39] |
R. Zwanzig, Memory effects in irreversible thermodynamics, Phys. Rev., 124 (1961), 983.
doi: 10.1103/PhysRev.124.983. |
[40] |
R. Zwanzig,
Nonlinear generalized Langevin equations, J. Stat. Phys., 9 (1973), 215-220.
doi: 10.1007/BF01008729. |





[1] |
Jing Li, Panos Stinis. Mori-Zwanzig reduced models for uncertainty quantification. Journal of Computational Dynamics, 2019, 6 (1) : 39-68. doi: 10.3934/jcd.2019002 |
[2] |
Carsten Hartmann, Juan C. Latorre, Wei Zhang, Grigorios A. Pavliotis. Addendum to "Optimal control of multiscale systems using reduced-order models". Journal of Computational Dynamics, 2017, 4 (1&2) : 167-167. doi: 10.3934/jcd.2017006 |
[3] |
Carsten Hartmann, Juan C. Latorre, Wei Zhang, Grigorios A. Pavliotis. Optimal control of multiscale systems using reduced-order models. Journal of Computational Dynamics, 2014, 1 (2) : 279-306. doi: 10.3934/jcd.2014.1.279 |
[4] |
Luigi C. Berselli, Tae-Yeon Kim, Leo G. Rebholz. Analysis of a reduced-order approximate deconvolution model and its interpretation as a Navier-Stokes-Voigt regularization. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1027-1050. doi: 10.3934/dcdsb.2016.21.1027 |
[5] |
Hao Sun, Shihua Li, Xuming Wang. Output feedback based sliding mode control for fuel quantity actuator system using a reduced-order GPIO. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1447-1464. doi: 10.3934/dcdss.2020375 |
[6] |
Lingling Lv, Wei He, Xianxing Liu, Lei Zhang. A robust reduced-order observers design approach for linear discrete periodic systems. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2799-2812. doi: 10.3934/jimo.2019081 |
[7] |
Zhendong Luo. A reduced-order SMFVE extrapolation algorithm based on POD technique and CN method for the non-stationary Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2015, 20 (4) : 1189-1212. doi: 10.3934/dcdsb.2015.20.1189 |
[8] |
Seddigheh Banihashemi, Hossein Jafaria, Afshin Babaei. A novel collocation approach to solve a nonlinear stochastic differential equation of fractional order involving a constant delay. Discrete and Continuous Dynamical Systems - S, 2022, 15 (2) : 339-357. doi: 10.3934/dcdss.2021025 |
[9] |
Loïs Boullu, Mostafa Adimy, Fabien Crauste, Laurent Pujo-Menjouet. Oscillations and asymptotic convergence for a delay differential equation modeling platelet production. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2417-2442. doi: 10.3934/dcdsb.2018259 |
[10] |
Yuri V. Rogovchenko, Fatoş Tuncay. Interval oscillation of a second order nonlinear differential equation with a damping term. Conference Publications, 2007, 2007 (Special) : 883-891. doi: 10.3934/proc.2007.2007.883 |
[11] |
Chunhua Jin, Jingxue Yin, Zejia Wang. Positive periodic solutions to a nonlinear fourth-order differential equation. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1225-1235. doi: 10.3934/cpaa.2008.7.1225 |
[12] |
Ruy Coimbra Charão, Juan Torres Espinoza, Ryo Ikehata. A second order fractional differential equation under effects of a super damping. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4433-4454. doi: 10.3934/cpaa.2020202 |
[13] |
Giuseppe Da Prato. An integral inequality for the invariant measure of some finite dimensional stochastic differential equation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3015-3027. doi: 10.3934/dcdsb.2016085 |
[14] |
András Bátkai, Istvan Z. Kiss, Eszter Sikolya, Péter L. Simon. Differential equation approximations of stochastic network processes: An operator semigroup approach. Networks and Heterogeneous Media, 2012, 7 (1) : 43-58. doi: 10.3934/nhm.2012.7.43 |
[15] |
Michael Scheutzow. Exponential growth rate for a singular linear stochastic delay differential equation. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1683-1696. doi: 10.3934/dcdsb.2013.18.1683 |
[16] |
Chunhong Li, Jiaowan Luo. Stochastic invariance for neutral functional differential equation with non-lipschitz coefficients. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3299-3318. doi: 10.3934/dcdsb.2018321 |
[17] |
Defei Zhang, Ping He. Functional solution about stochastic differential equation driven by $G$-Brownian motion. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 281-293. doi: 10.3934/dcdsb.2015.20.281 |
[18] |
Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391 |
[19] |
Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4887-4905. doi: 10.3934/dcdsb.2020317 |
[20] |
Roger Grimshaw, Dmitry Pelinovsky. Global existence of small-norm solutions in the reduced Ostrovsky equation. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 557-566. doi: 10.3934/dcds.2014.34.557 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]