
-
Previous Article
Solving the linear transport equation by a deep neural network approach
- DCDS-S Home
- This Issue
-
Next Article
Preface
A dictionary learning algorithm for compression and reconstruction of streaming data in preset order
Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA |
There has been an emerging interest in developing and applying dictionary learning (DL) to process massive datasets in the last decade. Many of these efforts, however, focus on employing DL to compress and extract a set of important features from data, while considering restoring the original data from this set a secondary goal. On the other hand, although several methods are able to process streaming data by updating the dictionary incrementally as new snapshots pass by, most of those algorithms are designed for the setting where the snapshots are randomly drawn from a probability distribution. In this paper, we present a new DL approach to compress and denoise massive dataset in real time, in which the data are streamed through in a preset order (instances are videos and temporal experimental data), so at any time, we can only observe a biased sample set of the whole data. Our approach incrementally builds up the dictionary in a relatively simple manner: if the new snapshot is adequately explained by the current dictionary, we perform a sparse coding to find its sparse representation; otherwise, we add the new snapshot to the dictionary, with a Gram-Schmidt process to maintain the orthogonality. To compress and denoise noisy datasets, we apply the denoising to the snapshot directly before sparse coding, which deviates from traditional dictionary learning approach that achieves denoising via sparse coding. Compared to full-batch matrix decomposition methods, where the whole data is kept in memory, and other mini-batch approaches, where unbiased sampling is often assumed, our approach has minimal requirement in data sampling and storage: i) each snapshot is only seen once then discarded, and ii) the snapshots are drawn in a preset order, so can be highly biased. Through experiments on climate simulations and scanning transmission electron microscopy (STEM) data, we demonstrate that the proposed approach performs competitively to those methods in data reconstruction and denoising.
References:
[1] |
M. Aharon and M. Elad,
Sparse and redundant modeling of image content using an image-signature-dictionary, SIAM J. Imaging Sci., 1 (2008), 228-247.
doi: 10.1137/07070156X. |
[2] |
M. Aharon, M. Elad and A. Bruckstein,
K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation, IEEE Trans. Signal Process., 54 (2006), 4311-4322.
doi: 10.1109/TSP.2006.881199. |
[3] |
A. Chambolle,
An algorithm for total variation minimization and applications, J. Math. Imaging Vision, 20 (2004), 89-97.
|
[4] |
K. Degraux, U. S. Kamilov, P. T. Boufounos and D. Liu, Online convolutional dictionary learning for multimodal imaging, in 2017 IEEE International Conference on Image Processing (ICIP), (2017), 1617–1621. |
[5] |
M. Elad and M. Aharon,
Image denoising via sparse and redundant representations over learned dictionaries, IEEE Transactions Image Processing, 15 (2006), 3736-3745.
doi: 10.1109/TIP.2006.881969. |
[6] |
J. Galewsky, R. K. Scott and L. M. Polvani,
An initial-value problem for testing numerical models of the global shallow-water equations, Tellus A: Dynamic Meteorology and Oceanography, 56 (2004), 429-440.
doi: 10.3402/tellusa.v56i5.14436. |
[7] |
P. Getreuer,
Rudin-osher-fatemi total variation denoising using split bregman, Image Processing On Line, 2 (2012), 74-95.
doi: 10.5201/ipol.2012.g-tvd. |
[8] |
S. Ghosh, A. Choquette, S. May, M. P. Oxley, A. R. Lupini, S. T. Pantelides and A. Y. Borisevich,
Identifying novel polar distortion modes in engineered magnetic oxide superlattices, Microscopy and Microanalysis, 23 (2017), 1590-1591.
doi: 10.1017/S1431927617008613. |
[9] |
R. Jenatton, G. Obozinski and F. Bach, Structured sparse principal component analysis, in Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (eds. Y. W. Teh and M. Titterington), vol. 9 of Proceedings of Machine Learning Research, JMLR Workshop and Conference Proceedings, Chia Laguna Resort, Sardinia, Italy, (2010), 366–373, http://proceedings.mlr.press/v9/jenatton10a.html. |
[10] |
S. P. Kasiviswanathan, H. Wang, A. Banerjee and P. Melville, Online l1-dictionary learning with application to novel document detection, Advances in Neural Information Processing Systems, 2258–2266. |
[11] |
J. Liu, C. Garcia-Cardona, B. Wohlberg and W. Yin,
First- and second-order methods for online convolutional dictionary learning, SIAM J. Imaging Sci., 11 (2018), 1589-1628.
doi: 10.1137/17M1145689. |
[12] |
C. Lu, J. Shi and J. Jia, Online robust dictionary learning, in 2013 IEEE Conference on Computer Vision and Pattern Recognition, (2013), 415–422.
doi: 10.1109/CVPR.2013.60. |
[13] |
J. Mairal, F. Bach and J. Ponce,
Task-driven dictionary learning, IEEE Trans. Pattern Anal. Mach. Intel., 34 (2012), 791-804.
|
[14] |
J. Mairal, F. Bach, J. Ponce and G. Sapiro, Online dictionary learning for sparse coding, in Proceedings of the 26th Annual International Conference on Machine Learning, (2009), 689–696.
doi: 10.1145/1553374.1553463. |
[15] |
A. Mensch, J. Mairal, B. Thirion and G. Varoquaux,
Dictionary learning for massive matrix factorization, Proceedings of the 33rd International Conference on Machine Learning (ICML), 48 (2016), 1737-1746.
|
[16] |
R. D. Nair, S. J. Thomas and R. D. Loft,
A discontinuous galerkin transport scheme on the cubed sphere, Monthly Weather Review, 133 (2005), 814-828.
doi: 10.1175/MWR2890.1. |
[17] |
B. A. Olshausen and D. J. Field,
Sparse coding with an overcomplete basis set: A strategy employed by v1?, Vision Research, 37 (1997), 3311-3325.
doi: 10.1016/S0042-6989(97)00169-7. |
[18] |
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot and E. Duchesnay,
Scikit-learn: Machine learning in Python, J. Mach. Learn. Res., 12 (2011), 2825-2830.
|
[19] |
D. A. Ross, J. Lim, R.-S. Lin and M.-H. Yang,
Incremental learning for robust visual tracking, International Journal of Computer Vision, 77 (2008), 125-141.
doi: 10.1007/s11263-007-0075-7. |
[20] |
R. Rubinstein, A. M. Bruckstein and M. Elad,
Dictionaries for sparse representation modeling, Proceedings of the IEEE, 98 (2010), 1045-1057.
|
[21] |
K. Slavakis and G. B. Giannakis, Online dictionary learning from big data using accelerated stochastic approximation algorithms, in 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), (2014), 16–20. |
[22] |
Z. Szabó, B. Póczos and A. Lörincz, Online group-structured dictionary learning, in CVPR 2011, (2011), 2865–2872. |
[23] |
I. Tosic and P. Frossard,
Dictionary learning, IEEE Signal Processing Magazine, 28 (2011), 27-38.
doi: 10.1109/MSP.2010.939537. |
[24] |
T. H. Vu and V. Monga,
Fast low-rank shared dictionary learning for image classification, IEEE Trans. Image Process., 26 (2017), 5160-5175.
doi: 10.1109/TIP.2017.2729885. |
[25] |
Y. Xu and W. Yin,
A fast patch-dictionary method for whole image recovery, Inverse Probl. Imaging, 10 (2016), 563-583.
doi: 10.3934/ipi.2016012. |
[26] |
S. Zhang, S. Kasiviswanathan, P. C. Yuen and M. Harandi, Online dictionary learning on symmetric positive definite manifolds with vision applications, Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 3165–3173. |
show all references
References:
[1] |
M. Aharon and M. Elad,
Sparse and redundant modeling of image content using an image-signature-dictionary, SIAM J. Imaging Sci., 1 (2008), 228-247.
doi: 10.1137/07070156X. |
[2] |
M. Aharon, M. Elad and A. Bruckstein,
K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation, IEEE Trans. Signal Process., 54 (2006), 4311-4322.
doi: 10.1109/TSP.2006.881199. |
[3] |
A. Chambolle,
An algorithm for total variation minimization and applications, J. Math. Imaging Vision, 20 (2004), 89-97.
|
[4] |
K. Degraux, U. S. Kamilov, P. T. Boufounos and D. Liu, Online convolutional dictionary learning for multimodal imaging, in 2017 IEEE International Conference on Image Processing (ICIP), (2017), 1617–1621. |
[5] |
M. Elad and M. Aharon,
Image denoising via sparse and redundant representations over learned dictionaries, IEEE Transactions Image Processing, 15 (2006), 3736-3745.
doi: 10.1109/TIP.2006.881969. |
[6] |
J. Galewsky, R. K. Scott and L. M. Polvani,
An initial-value problem for testing numerical models of the global shallow-water equations, Tellus A: Dynamic Meteorology and Oceanography, 56 (2004), 429-440.
doi: 10.3402/tellusa.v56i5.14436. |
[7] |
P. Getreuer,
Rudin-osher-fatemi total variation denoising using split bregman, Image Processing On Line, 2 (2012), 74-95.
doi: 10.5201/ipol.2012.g-tvd. |
[8] |
S. Ghosh, A. Choquette, S. May, M. P. Oxley, A. R. Lupini, S. T. Pantelides and A. Y. Borisevich,
Identifying novel polar distortion modes in engineered magnetic oxide superlattices, Microscopy and Microanalysis, 23 (2017), 1590-1591.
doi: 10.1017/S1431927617008613. |
[9] |
R. Jenatton, G. Obozinski and F. Bach, Structured sparse principal component analysis, in Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (eds. Y. W. Teh and M. Titterington), vol. 9 of Proceedings of Machine Learning Research, JMLR Workshop and Conference Proceedings, Chia Laguna Resort, Sardinia, Italy, (2010), 366–373, http://proceedings.mlr.press/v9/jenatton10a.html. |
[10] |
S. P. Kasiviswanathan, H. Wang, A. Banerjee and P. Melville, Online l1-dictionary learning with application to novel document detection, Advances in Neural Information Processing Systems, 2258–2266. |
[11] |
J. Liu, C. Garcia-Cardona, B. Wohlberg and W. Yin,
First- and second-order methods for online convolutional dictionary learning, SIAM J. Imaging Sci., 11 (2018), 1589-1628.
doi: 10.1137/17M1145689. |
[12] |
C. Lu, J. Shi and J. Jia, Online robust dictionary learning, in 2013 IEEE Conference on Computer Vision and Pattern Recognition, (2013), 415–422.
doi: 10.1109/CVPR.2013.60. |
[13] |
J. Mairal, F. Bach and J. Ponce,
Task-driven dictionary learning, IEEE Trans. Pattern Anal. Mach. Intel., 34 (2012), 791-804.
|
[14] |
J. Mairal, F. Bach, J. Ponce and G. Sapiro, Online dictionary learning for sparse coding, in Proceedings of the 26th Annual International Conference on Machine Learning, (2009), 689–696.
doi: 10.1145/1553374.1553463. |
[15] |
A. Mensch, J. Mairal, B. Thirion and G. Varoquaux,
Dictionary learning for massive matrix factorization, Proceedings of the 33rd International Conference on Machine Learning (ICML), 48 (2016), 1737-1746.
|
[16] |
R. D. Nair, S. J. Thomas and R. D. Loft,
A discontinuous galerkin transport scheme on the cubed sphere, Monthly Weather Review, 133 (2005), 814-828.
doi: 10.1175/MWR2890.1. |
[17] |
B. A. Olshausen and D. J. Field,
Sparse coding with an overcomplete basis set: A strategy employed by v1?, Vision Research, 37 (1997), 3311-3325.
doi: 10.1016/S0042-6989(97)00169-7. |
[18] |
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot and E. Duchesnay,
Scikit-learn: Machine learning in Python, J. Mach. Learn. Res., 12 (2011), 2825-2830.
|
[19] |
D. A. Ross, J. Lim, R.-S. Lin and M.-H. Yang,
Incremental learning for robust visual tracking, International Journal of Computer Vision, 77 (2008), 125-141.
doi: 10.1007/s11263-007-0075-7. |
[20] |
R. Rubinstein, A. M. Bruckstein and M. Elad,
Dictionaries for sparse representation modeling, Proceedings of the IEEE, 98 (2010), 1045-1057.
|
[21] |
K. Slavakis and G. B. Giannakis, Online dictionary learning from big data using accelerated stochastic approximation algorithms, in 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), (2014), 16–20. |
[22] |
Z. Szabó, B. Póczos and A. Lörincz, Online group-structured dictionary learning, in CVPR 2011, (2011), 2865–2872. |
[23] |
I. Tosic and P. Frossard,
Dictionary learning, IEEE Signal Processing Magazine, 28 (2011), 27-38.
doi: 10.1109/MSP.2010.939537. |
[24] |
T. H. Vu and V. Monga,
Fast low-rank shared dictionary learning for image classification, IEEE Trans. Image Process., 26 (2017), 5160-5175.
doi: 10.1109/TIP.2017.2729885. |
[25] |
Y. Xu and W. Yin,
A fast patch-dictionary method for whole image recovery, Inverse Probl. Imaging, 10 (2016), 563-583.
doi: 10.3934/ipi.2016012. |
[26] |
S. Zhang, S. Kasiviswanathan, P. C. Yuen and M. Harandi, Online dictionary learning on symmetric positive definite manifolds with vision applications, Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 3165–3173. |







Methods | batch size | RRMSE | PSNR |
1 | 0.842 | 12.561 | |
1 | 0.338 | 26.506 | |
1 | 0.068 | 43.484 | |
40 | 0.011 | 51.887 | |
2000 | 0.013 | 49.971 |
Methods | batch size | RRMSE | PSNR |
1 | 0.842 | 12.561 | |
1 | 0.338 | 26.506 | |
1 | 0.068 | 43.484 | |
40 | 0.011 | 51.887 | |
2000 | 0.013 | 49.971 |
Methods | batch size | RRMSE | PSNR |
1 | 0.857 | 12.418 | |
1 | 0.364 | 26.455 | |
1 | 0.134 | 28.895 | |
61 | 0.183 | 25.996 | |
2000 | 0.179 | 26.236 |
Methods | batch size | RRMSE | PSNR |
1 | 0.857 | 12.418 | |
1 | 0.364 | 26.455 | |
1 | 0.134 | 28.895 | |
61 | 0.183 | 25.996 | |
2000 | 0.179 | 26.236 |
Methods | batch size | RRMSE | PSNR |
1 | 0.647 | 16.546 | |
1 | 0.449 | 20.139 | |
1 | 0.0814 | 36.949 | |
41 | 0.011 | 52.378 | |
11616 | 0.132 | 30.878 |
Methods | batch size | RRMSE | PSNR |
1 | 0.647 | 16.546 | |
1 | 0.449 | 20.139 | |
1 | 0.0814 | 36.949 | |
41 | 0.011 | 52.378 | |
11616 | 0.132 | 30.878 |
Methods | batch size | RRMSE | PSNR |
1 | 0.594 | 17.280 | |
1 | 0.643 | 16.927 | |
1 | 0.211 | 26.327 | |
39 | 0.086 | 34.156 | |
11616 | 0.152 | 29.423 |
Methods | batch size | RRMSE | PSNR |
1 | 0.594 | 17.280 | |
1 | 0.643 | 16.927 | |
1 | 0.211 | 26.327 | |
39 | 0.086 | 34.156 | |
11616 | 0.152 | 29.423 |
[1] |
Aude Hofleitner, Tarek Rabbani, Mohammad Rafiee, Laurent El Ghaoui, Alex Bayen. Learning and estimation applications of an online homotopy algorithm for a generalization of the LASSO. Discrete and Continuous Dynamical Systems - S, 2014, 7 (3) : 503-523. doi: 10.3934/dcdss.2014.7.503 |
[2] |
Ran Ma, Lu Zhang, Yuzhong Zhang. A best possible algorithm for an online scheduling problem with position-based learning effect. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021144 |
[3] |
Ning Zhang, Qiang Wu. Online learning for supervised dimension reduction. Mathematical Foundations of Computing, 2019, 2 (2) : 95-106. doi: 10.3934/mfc.2019008 |
[4] |
Haixia Liu, Jian-Feng Cai, Yang Wang. Subspace clustering by (k,k)-sparse matrix factorization. Inverse Problems and Imaging, 2017, 11 (3) : 539-551. doi: 10.3934/ipi.2017025 |
[5] |
Shuhua Wang, Zhenlong Chen, Baohuai Sheng. Convergence of online pairwise regression learning with quadratic loss. Communications on Pure and Applied Analysis, 2020, 19 (8) : 4023-4054. doi: 10.3934/cpaa.2020178 |
[6] |
Yangyang Xu, Ruru Hao, Wotao Yin, Zhixun Su. Parallel matrix factorization for low-rank tensor completion. Inverse Problems and Imaging, 2015, 9 (2) : 601-624. doi: 10.3934/ipi.2015.9.601 |
[7] |
Jiping Tao, Ronghuan Huang, Tundong Liu. A $2.28$-competitive algorithm for online scheduling on identical machines. Journal of Industrial and Management Optimization, 2015, 11 (1) : 185-198. doi: 10.3934/jimo.2015.11.185 |
[8] |
Roberto C. Alamino, Nestor Caticha. Bayesian online algorithms for learning in discrete hidden Markov models. Discrete and Continuous Dynamical Systems - B, 2008, 9 (1) : 1-10. doi: 10.3934/dcdsb.2008.9.1 |
[9] |
Marc Bocquet, Alban Farchi, Quentin Malartic. Online learning of both state and dynamics using ensemble Kalman filters. Foundations of Data Science, 2021, 3 (3) : 305-330. doi: 10.3934/fods.2020015 |
[10] |
Soheila Garshasbi, Brian Yecies, Jun Shen. Microlearning and computer-supported collaborative learning: An agenda towards a comprehensive online learning system. STEM Education, 2021, 1 (4) : 225-255. doi: 10.3934/steme.2021016 |
[11] |
Lingling Lv, Zhe Zhang, Lei Zhang, Weishu Wang. An iterative algorithm for periodic sylvester matrix equations. Journal of Industrial and Management Optimization, 2018, 14 (1) : 413-425. doi: 10.3934/jimo.2017053 |
[12] |
Ruiqi Yang, Dachuan Xu, Yicheng Xu, Dongmei Zhang. An adaptive probabilistic algorithm for online k-center clustering. Journal of Industrial and Management Optimization, 2019, 15 (2) : 565-576. doi: 10.3934/jimo.2018057 |
[13] |
Zongwei Chen. An online-decision algorithm for the multi-period bank clearing problem. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021091 |
[14] |
Armin Eftekhari, Michael B. Wakin, Ping Li, Paul G. Constantine. Randomized learning of the second-moment matrix of a smooth function. Foundations of Data Science, 2019, 1 (3) : 329-387. doi: 10.3934/fods.2019015 |
[15] |
Yudong Li, Yonggang Li, Bei Sun, Yu Chen. Zinc ore supplier evaluation and recommendation method based on nonlinear adaptive online transfer learning. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021193 |
[16] |
Victor Meng Hwee Ong, David J. Nott, Taeryon Choi, Ajay Jasra. Flexible online multivariate regression with variational Bayes and the matrix-variate Dirichlet process. Foundations of Data Science, 2019, 1 (2) : 129-156. doi: 10.3934/fods.2019006 |
[17] |
Vassilios A. Tsachouridis, Georgios Giantamidis, Stylianos Basagiannis, Kostas Kouramas. Formal analysis of the Schulz matrix inversion algorithm: A paradigm towards computer aided verification of general matrix flow solvers. Numerical Algebra, Control and Optimization, 2020, 10 (2) : 177-206. doi: 10.3934/naco.2019047 |
[18] |
Jiping Tao, Zhijun Chao, Yugeng Xi. A semi-online algorithm and its competitive analysis for a single machine scheduling problem with bounded processing times. Journal of Industrial and Management Optimization, 2010, 6 (2) : 269-282. doi: 10.3934/jimo.2010.6.269 |
[19] |
Ran Ma, Jiping Tao. An improved 2.11-competitive algorithm for online scheduling on parallel machines to minimize total weighted completion time. Journal of Industrial and Management Optimization, 2018, 14 (2) : 497-510. doi: 10.3934/jimo.2017057 |
[20] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems and Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]