[1]
|
Y. Bar-Sinai, S. Hoyer, J. Hickey and M. P. Brenner, Learning data-driven discretizations for partial differential equations, Proc. Natl. Acad. Sci. USA, 116 (2019), 15344-15349.
doi: 10.1073/pnas.1814058116.
|
[2]
|
A. J. Chorin and F. Lu, Discrete approach to stochastic parametrization and dimension reduction in nonlinear dynamics, Proceedings of the National Academy of Sciences, USA, 112 (2015), 9804-9809.
|
[3]
|
A. J. Chorin, F. Lu, R. N. Miller, M. Morzfeld and X. Tu, Sampling, feasibility, and priors in data assimilation, Discrete Contin. Dyn. Syst., 36 (2016), 4227-4246.
doi: 10.3934/dcds.2016.36.4227.
|
[4]
|
W. E, B. Engquist, X. Li, W. Ren and E. Vanden-Eijnden, The heterogeneous multiscale method: A review, Commun. Comput. Phys., 2 (2007), 367-450.
|
[5]
|
P. Hall and C. C. Heyde, Martingale Limit Theory and its Application, Academic press, 1980.
|
[6]
|
Han, Jentzen and W. E, Solving high-dimensional partial differential equations using deep learning, Proc. Natl. Acad. Sci. USA, 115 (2018), 8505-8510.
doi: 10.1073/pnas.1718942115.
|
[7]
|
J. A. Hansen and C. Penland, Efficient approximate technique for integrating stochastic differential equations, Monthly Weather Review, 134 (2006), 3006-3014.
doi: 10.1175/MWR3192.1.
|
[8]
|
C. C. Heyde, On the central limit theorem for stationary processes, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 30 (1974), 315-320.
doi: 10.1007/BF00532619.
|
[9]
|
Y. Hu, Strong and weak order of time discretization schemes of stochastic differential equatios, In Séminaire de Probabilités XXX, Springer, (1996), 218–227.
doi: 10.1007/BFb0094650.
|
[10]
|
T. Hudson and X. H. Li, Coarse-graining of overdamped Langevin dynamics via the Mori–Zwanzig formalism, Multiscale Model. Simul., 18 (2020), 1113-1135.
doi: 10.1137/18M1222533.
|
[11]
|
M. Hutzenthaler and A. Jentzen, Numerical Approximations of Stochastic Differential Equations with Non-globally Lipschitz Continuous Coefficients, American Mathematical Society, 2015.
doi: 10.1090/memo/1112.
|
[12]
|
M. Hutzenthaler, A. Jentzen and P. E. Kloeden, Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients, Ann. Appl. Probab., 22 (2012), 1611-1641.
doi: 10.1214/11-AAP803.
|
[13]
|
A. Jentzen and P. Kloeden, Taylor expansions of solutions of stochastic partial differential equations with additive noise, Ann. Probab., 38 (2010), 532-569.
doi: 10.1214/09-AOP500.
|
[14]
|
S. W. Jiang and J. Harlim, Modeling of missing dynamical systems: Deriving parametric models using a nonparametric framework, Res. Math. Sci., 7 (2020), Paper No. 16, 25 pp.
doi: 10.1007/s40687-020-00217-4.
|
[15]
|
R. Khasminskii, Stochastic Stability of Differential Equations, volume 66., Springer-Verlag Berlin Heidelberg, 2nd edition, 2012.
doi: 10.1007/978-3-642-23280-0.
|
[16]
|
B. Khouider, A. J. Majda and M. A. Katsoulakis, Coarse-grained stochastic models for tropical convection and climate, Proc. Natl. Acad. Sci. USA, 100 (2003), 11941-11946.
|
[17]
|
P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer, Berlin, 3rd edition, 1992.
doi: 10.1007/978-3-662-12616-5.
|
[18]
|
K. Law, A. Stuart and K. Zygalakis, Data Assimilation: A Mathematical Introduction, Springer, 2015.
doi: 10.1007/978-3-319-20325-6.
|
[19]
|
F. Legoll and T. Lelièvre, Effective dynamics using conditional expectations, Nonlinearity, 23 (2010), 2131-2163.
doi: 10.1088/0951-7715/23/9/006.
|
[20]
|
F. Legoll, T. Leliévre and U. Sharma, Effective dynamics for non-reversible stochastic differential equations: A quantitative study, Nonlinearity, 32 (2019), 4779-4816.
doi: 10.1088/1361-6544/ab34bf.
|
[21]
|
H. Lei, N. A. Baker and X. Li, Data-driven parameterization of the generalized Langevin equation, Proc. Natl. Acad. Sci. USA, 113 (2016), 14183-14188.
|
[22]
|
B. Leimkuhler and C. Matthews, Molecular Dynamics, Springer, 2015.
|
[23]
|
Y. Li and J. Duan, A data-driven approach for discovering stochastic dynamical systems with non-Gaussian Lévy noise, Phys. D, 417 (2021), 132830, 12 pp.
doi: 10.1016/j.physd.2020.132830.
|
[24]
|
K. K. Lin and F. Lu, Data-driven model reduction, Wiener projections, and the Koopman-Mori-Zwanzig formalism, J. Comput. Phys., 424 (2021), 109864, 33 pp.
doi: 10.1016/j.jcp.2020.109864.
|
[25]
|
S. Liu, L. Grzelak and C. W. Oosterlee, The seven-league scheme: Deep learning for large time step monte carlo simulations of stochastic differential equations, arXiv: 2009.03202, (2020).
|
[26]
|
F. Lu, Data-driven model reduction for stochastic Burgers equations, Entropy, 22 (2020), Paper No. 1360, 22 pp.
doi: 10.3390/e22121360.
|
[27]
|
F. Lu, K. K. Lin and A. J. Chorin, Comparison of continuous and discrete-time data-based modeling for hypoelliptic systems, Commun. Appl. Math. Comput. Sci., 11 (2016), 187-216.
doi: 10.2140/camcos.2016.11.187.
|
[28]
|
F. Lu, K. K. Lin and A. J. Chorin, Data-based stochastic model reduction for the Kuramoto–Sivashinsky equation, Phys. D, 340 (2017), 46-57.
doi: 10.1016/j.physd.2016.09.007.
|
[29]
|
F. Lu, M. Maggioni and S. Tang, Learning interaction kernels in stochastic systems of interacting particles from multiple trajectories, J. Mach. Learn. Res., 22 (2021), Paper No. 32, 67 pp.
|
[30]
|
F. Lu, M. Zhong, S. Tang and M. Maggioni, Nonparametric inference of interaction laws in systems of agents from trajectory data, Proc. Natl. Acad. Sci. USA, 116 (2019), 14424-14433.
|
[31]
|
Y. Maday and G. Turinici, A parareal in time procedure for the control of partial differential equations, C. R. Math. Acad. Sci. Paris, 335 (2002), 387-392.
doi: 10.1016/S1631-073X(02)02467-6.
|
[32]
|
A. J. Majda and J. Harlim, Physics constrained nonlinear regression models for time series, Nonlinearity, 26 (2013), 201-217.
doi: 10.1088/0951-7715/26/1/201.
|
[33]
|
X. Mao, Stochastic Differential Equations and Applications, Elsevier, 2007.
|
[34]
|
J. C. Mattingly, A. M. Stuart and and D. J. Higham, Ergodicity for SDEs and approximations: Locally Lipschitz vector fields and degenerate noise, Stochastic Process. Appl., 101 (2002), 185-232.
doi: 10.1016/S0304-4149(02)00150-3.
|
[35]
|
G. A. Pavliotis and A. M. Stuart, Parameter estimation for multiscale diffusions, J. Statist. Phys., 127 (2007), 741-781.
doi: 10.1007/s10955-007-9300-6.
|
[36]
|
G. O. Roberts and R. L. Tweedie, Exponential convergence of Langevin distributions and their discrete approximations, Bernoulli, 2 (1996), 341-363.
doi: 10.2307/3318418.
|
[37]
|
W. Rümelin, Numerical treatment of stochastic differential equations, SIAM J. Numer. Anal., 19 (1982), 604-613.
doi: 10.1137/0719041.
|
[38]
|
J. Sirignano and K. Spiliopoulos, DGM: A deep learning algorithm for solving partial differential equations, J. Comput. Phys., 375 (2018), 1339-1364.
doi: 10.1016/j.jcp.2018.08.029.
|
[39]
|
L. Yang, D. Zhang and G. E. Karniadakis, Physics-informed generative adversarial networks for stochastic differential equations, SIAM J. Sci. Comput., 42 (2020), A292-A317.
doi: 10.1137/18M1225409.
|