December  2021, 14(12): 4643-4658. doi: 10.3934/dcdss.2021110

Long-time behavior for fourth-order wave equations with strain term and nonlinear weak damping term

College of Mathematical Sciences, Harbin Engineering University, No. 145 Nantong Street, Harbin 150001, China

* Corresponding author: Yanbing Yang

Received  July 2021 Revised  August 2021 Published  December 2021 Early access  October 2021

Fund Project: The work was supported by the Heilongjiang Postdoctoral Research Start-up Funding Project (No. LBH-Q20013 and No. LBH-Q20086), the National Natural Science Foundation of China (No. 11801114 and No. 11871017) and the Research Funds for the Central Universities

We mainly focus on the asymptotic behavior analysis for certain fourth-order nonlinear wave equations with strain term, nonlinear weak damping term and source term. We establish two theorems on the asymptotic behavior of the solution depending on some conditions related to the relationship among the forced strain term, the nonlinear weak damping term and source terms.

Citation: Chao Yang, Yanbing Yang. Long-time behavior for fourth-order wave equations with strain term and nonlinear weak damping term. Discrete & Continuous Dynamical Systems - S, 2021, 14 (12) : 4643-4658. doi: 10.3934/dcdss.2021110
References:
[1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.   Google Scholar
[2]

L. J. An and A. Peirce, A weakly nonlinear analysis of elasto-plastic-microstructure models, SIAM J. Appl. Math., 55 (1995), 136-155.  doi: 10.1137/S0036139993255327.  Google Scholar

[3]

L. J. An and A. Peirce, The effect of microstructure on elastic-plastic models, SIAM J. Appl. Math., 54 (1994), 708-730.  doi: 10.1137/S0036139992238498.  Google Scholar

[4]

V. BarrosC. Nonato and C. Raposo, Global existence and energy decay of solutions for a wave equation with non-constant delay and nonlinear weights, Electron. Res. Arch., 28 (2020), 205-220.  doi: 10.3934/era.2020014.  Google Scholar

[5]

T. Cazenave and Z. Han, Asymptotic behavior for a Schrödinger equation with nonlinear subcritical dissipation, Discrete Contin. Dyn. Syst., 40 (2020), 4801-4819.  doi: 10.3934/dcds.2020202.  Google Scholar

[6]

G. W. Chen and Z. J. Yang, Existence and non-existence of global solutions for a class of nonlinear wave equations, Math. Meth. Appl. Sci., 23 (2000), 615-631.   Google Scholar

[7]

H. DiY. Shang and J. Yu, Existence and uniform decay estimates for the fourth order wave eqation with nonlinnear boundary damping and interior source, Electron. Res. Arch., 28 (2020), 221-261.  doi: 10.3934/era.2020015.  Google Scholar

[8]

J. A. Esquivel-Avila, Dynamics around the ground state of a nonlinear evolution equation, Nonlinear Anal., 63 (2005), 331-343.  doi: 10.1016/j.na.2005.02.108.  Google Scholar

[9]

L. H. FatoriM. A. Jorge SilvaT. F. Ma and Z. Yang, Long-time behavior of a class of thermoelastic plates with nonlinear strain, J. Differential Equations, 259 (2015), 4831-4862.  doi: 10.1016/j.jde.2015.06.026.  Google Scholar

[10]

V. Georgiev and G. Todorova, Existence of solutions of the wave equation with nonlinear damping and source terms, J. Differential Equations, 109 (1994), 295-308.  doi: 10.1006/jdeq.1994.1051.  Google Scholar

[11]

E. H. Gomes Tavares, M. A. Jorge Silva and T. F. Ma, Sharp decay rates for a class of nonlinear viscoelastic plate models, Commun. Contemp. Math., 20 (2018), 1750010, 21 pp. doi: 10.1142/S0219199717500109.  Google Scholar

[12]

J. HanR. Xu and Y. Yang, Asymptotic behavior and finite time blow up for damped fourth order nonlinear evolution equation, Asymptotic. Anal., 122 (2021), 349-369.  doi: 10.3233/ASY-201621.  Google Scholar

[13]

M. A. Jorge Silva and T. F. Ma, On a viscoelastic plate equation with history setting and perturbation of $p$-Laplacian type, IMA J. Appl. Math., 78 (2013), 1130-1146.  doi: 10.1093/imamat/hxs011.  Google Scholar

[14]

V. Komornik, Exact Controllability and Stabilization, The Multiplier Method, Research in Applied Mathematics, Masson, Paris, France, 1994.  Google Scholar

[15]

J. Kreulich, Asymptotic behavior of evolution systems in arbitrary Banach spaces using general almost periodic splittings, Adv. Nonlinear Anal., 8 (2019), 1-28.  doi: 10.1515/anona-2016-0075.  Google Scholar

[16]

W. LianV. D. RădulescuR. XuY. Yang and N. Zhao, Global well-posedness for a class of fourth order nonlinear strongly damped wave equations, Adv. Calc. Var., 14 (2021), 589-611.  doi: 10.1515/acv-2019-0039.  Google Scholar

[17]

W. Lian and R. Xu, Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term, Adv. Nonlinear Anal., 9 (2020), 613-632.  doi: 10.1515/anona-2020-0016.  Google Scholar

[18]

J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Paris, 1969.  Google Scholar

[19]

Y. Liu, Long-time behavior of a class of viscoelastic plate equations, Electron. Res. Arch., 28 (2020), 311-326.  doi: 10.3934/era.2020018.  Google Scholar

[20]

Y. Liu and R. Xu, A class of fourth order wave equations with dissipative and nonlinear strain terms, J. Differential Equations., 244 (2008), 200-228.  doi: 10.1016/j.jde.2007.10.015.  Google Scholar

[21]

Y. Liu and R. Xu, Fourth order wave equations with nonlinear strain and source terms, J. Math. Anal. Appl., 331 (2007), 585-607.  doi: 10.1016/j.jmaa.2006.09.010.  Google Scholar

[22]

T. F. Ma and M. L. Pelicer, Attractors for weakly damped beam equations with $p$-Laplacian, Discrete Contin. Dyn. Syst., 2013 (2013), 525-534.  doi: 10.3934/proc.2013.2013.525.  Google Scholar

[23]

A. MohammedV. D. Rădulescu and A. Vitolo, Blow-up solutions for fully nonlinear equations: Existence, asymptotic estimates and uniqueness, Adv. Nonlinear Anal., 9 (2020), 39-64.  doi: 10.1515/anona-2018-0134.  Google Scholar

[24]

T. T. Nguyen, Asymptotic limit and decay estimates for a class of dissipative linear hyperbolic systems in several dimensions, Discrete Contin. Dyn. Syst., 39 (2019), 1651-1684.  doi: 10.3934/dcds.2019073.  Google Scholar

[25]

F. Shakeri and M. Dehghan, A hybrid Legendre tau method for the solution of a class of nonlinear wave equations with nonlinear dissipative terms, Numer. Methods Partial Differential Equations, 27 (2011), 1055-1071.  doi: 10.1002/num.20569.  Google Scholar

[26]

J. Shen, Y. Yang, S. Chen and R. Xu, Finite time blow up of fourth order wave equations with nonlinear strain and source terms at high energy level, Internat. J. Math., 24 (2013), 1350043, 8 pp. doi: 10.1142/S0129167X13500432.  Google Scholar

[27]

Y. Wang and Y. Wang, On the initial-boundary problem for fourth order wave equations with damping, strain and source terms, J. Math. Anal. Appl., 405 (2013), 116-127.  doi: 10.1016/j.jmaa.2013.03.060.  Google Scholar

[28]

Z.-Y. Yan, Similarity reduction and integrability for the nonlinear wave equations from EPM model, Commun. Theor. Phys (Beijing)., 35 (2001), 647-650.  doi: 10.1088/0253-6102/35/6/647.  Google Scholar

[29]

X.-G. YangM. J. D Nascimento and M. L. Pelicer, Uniform attractors for non-autonomous plate equations with $p$-Laplacian perturbation and critical nonlinearities, Discrete Contin. Dyn. Syst., 40 (2020), 1937-1961.  doi: 10.3934/dcds.2020100.  Google Scholar

[30]

Z.-J. Yang, Global existence, asymptotic behavior and blowup of solutions for a class of nonlinear wave equations with dissipative term, J. Differential Equations, 187 (2003), 520-540.   Google Scholar

show all references

References:
[1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.   Google Scholar
[2]

L. J. An and A. Peirce, A weakly nonlinear analysis of elasto-plastic-microstructure models, SIAM J. Appl. Math., 55 (1995), 136-155.  doi: 10.1137/S0036139993255327.  Google Scholar

[3]

L. J. An and A. Peirce, The effect of microstructure on elastic-plastic models, SIAM J. Appl. Math., 54 (1994), 708-730.  doi: 10.1137/S0036139992238498.  Google Scholar

[4]

V. BarrosC. Nonato and C. Raposo, Global existence and energy decay of solutions for a wave equation with non-constant delay and nonlinear weights, Electron. Res. Arch., 28 (2020), 205-220.  doi: 10.3934/era.2020014.  Google Scholar

[5]

T. Cazenave and Z. Han, Asymptotic behavior for a Schrödinger equation with nonlinear subcritical dissipation, Discrete Contin. Dyn. Syst., 40 (2020), 4801-4819.  doi: 10.3934/dcds.2020202.  Google Scholar

[6]

G. W. Chen and Z. J. Yang, Existence and non-existence of global solutions for a class of nonlinear wave equations, Math. Meth. Appl. Sci., 23 (2000), 615-631.   Google Scholar

[7]

H. DiY. Shang and J. Yu, Existence and uniform decay estimates for the fourth order wave eqation with nonlinnear boundary damping and interior source, Electron. Res. Arch., 28 (2020), 221-261.  doi: 10.3934/era.2020015.  Google Scholar

[8]

J. A. Esquivel-Avila, Dynamics around the ground state of a nonlinear evolution equation, Nonlinear Anal., 63 (2005), 331-343.  doi: 10.1016/j.na.2005.02.108.  Google Scholar

[9]

L. H. FatoriM. A. Jorge SilvaT. F. Ma and Z. Yang, Long-time behavior of a class of thermoelastic plates with nonlinear strain, J. Differential Equations, 259 (2015), 4831-4862.  doi: 10.1016/j.jde.2015.06.026.  Google Scholar

[10]

V. Georgiev and G. Todorova, Existence of solutions of the wave equation with nonlinear damping and source terms, J. Differential Equations, 109 (1994), 295-308.  doi: 10.1006/jdeq.1994.1051.  Google Scholar

[11]

E. H. Gomes Tavares, M. A. Jorge Silva and T. F. Ma, Sharp decay rates for a class of nonlinear viscoelastic plate models, Commun. Contemp. Math., 20 (2018), 1750010, 21 pp. doi: 10.1142/S0219199717500109.  Google Scholar

[12]

J. HanR. Xu and Y. Yang, Asymptotic behavior and finite time blow up for damped fourth order nonlinear evolution equation, Asymptotic. Anal., 122 (2021), 349-369.  doi: 10.3233/ASY-201621.  Google Scholar

[13]

M. A. Jorge Silva and T. F. Ma, On a viscoelastic plate equation with history setting and perturbation of $p$-Laplacian type, IMA J. Appl. Math., 78 (2013), 1130-1146.  doi: 10.1093/imamat/hxs011.  Google Scholar

[14]

V. Komornik, Exact Controllability and Stabilization, The Multiplier Method, Research in Applied Mathematics, Masson, Paris, France, 1994.  Google Scholar

[15]

J. Kreulich, Asymptotic behavior of evolution systems in arbitrary Banach spaces using general almost periodic splittings, Adv. Nonlinear Anal., 8 (2019), 1-28.  doi: 10.1515/anona-2016-0075.  Google Scholar

[16]

W. LianV. D. RădulescuR. XuY. Yang and N. Zhao, Global well-posedness for a class of fourth order nonlinear strongly damped wave equations, Adv. Calc. Var., 14 (2021), 589-611.  doi: 10.1515/acv-2019-0039.  Google Scholar

[17]

W. Lian and R. Xu, Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term, Adv. Nonlinear Anal., 9 (2020), 613-632.  doi: 10.1515/anona-2020-0016.  Google Scholar

[18]

J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Paris, 1969.  Google Scholar

[19]

Y. Liu, Long-time behavior of a class of viscoelastic plate equations, Electron. Res. Arch., 28 (2020), 311-326.  doi: 10.3934/era.2020018.  Google Scholar

[20]

Y. Liu and R. Xu, A class of fourth order wave equations with dissipative and nonlinear strain terms, J. Differential Equations., 244 (2008), 200-228.  doi: 10.1016/j.jde.2007.10.015.  Google Scholar

[21]

Y. Liu and R. Xu, Fourth order wave equations with nonlinear strain and source terms, J. Math. Anal. Appl., 331 (2007), 585-607.  doi: 10.1016/j.jmaa.2006.09.010.  Google Scholar

[22]

T. F. Ma and M. L. Pelicer, Attractors for weakly damped beam equations with $p$-Laplacian, Discrete Contin. Dyn. Syst., 2013 (2013), 525-534.  doi: 10.3934/proc.2013.2013.525.  Google Scholar

[23]

A. MohammedV. D. Rădulescu and A. Vitolo, Blow-up solutions for fully nonlinear equations: Existence, asymptotic estimates and uniqueness, Adv. Nonlinear Anal., 9 (2020), 39-64.  doi: 10.1515/anona-2018-0134.  Google Scholar

[24]

T. T. Nguyen, Asymptotic limit and decay estimates for a class of dissipative linear hyperbolic systems in several dimensions, Discrete Contin. Dyn. Syst., 39 (2019), 1651-1684.  doi: 10.3934/dcds.2019073.  Google Scholar

[25]

F. Shakeri and M. Dehghan, A hybrid Legendre tau method for the solution of a class of nonlinear wave equations with nonlinear dissipative terms, Numer. Methods Partial Differential Equations, 27 (2011), 1055-1071.  doi: 10.1002/num.20569.  Google Scholar

[26]

J. Shen, Y. Yang, S. Chen and R. Xu, Finite time blow up of fourth order wave equations with nonlinear strain and source terms at high energy level, Internat. J. Math., 24 (2013), 1350043, 8 pp. doi: 10.1142/S0129167X13500432.  Google Scholar

[27]

Y. Wang and Y. Wang, On the initial-boundary problem for fourth order wave equations with damping, strain and source terms, J. Math. Anal. Appl., 405 (2013), 116-127.  doi: 10.1016/j.jmaa.2013.03.060.  Google Scholar

[28]

Z.-Y. Yan, Similarity reduction and integrability for the nonlinear wave equations from EPM model, Commun. Theor. Phys (Beijing)., 35 (2001), 647-650.  doi: 10.1088/0253-6102/35/6/647.  Google Scholar

[29]

X.-G. YangM. J. D Nascimento and M. L. Pelicer, Uniform attractors for non-autonomous plate equations with $p$-Laplacian perturbation and critical nonlinearities, Discrete Contin. Dyn. Syst., 40 (2020), 1937-1961.  doi: 10.3934/dcds.2020100.  Google Scholar

[30]

Z.-J. Yang, Global existence, asymptotic behavior and blowup of solutions for a class of nonlinear wave equations with dissipative term, J. Differential Equations, 187 (2003), 520-540.   Google Scholar

[1]

Jinxing Liu, Xiongrui Wang, Jun Zhou, Huan Zhang. Blow-up phenomena for the sixth-order Boussinesq equation with fourth-order dispersion term and nonlinear source. Discrete & Continuous Dynamical Systems - S, 2021, 14 (12) : 4321-4335. doi: 10.3934/dcdss.2021108

[2]

Kelin Li, Huafei Di. On the well-posedness and stability for the fourth-order Schrödinger equation with nonlinear derivative term. Discrete & Continuous Dynamical Systems - S, 2021, 14 (12) : 4293-4320. doi: 10.3934/dcdss.2021122

[3]

Yinbin Deng, Qi Gao. Asymptotic behavior of the positive solutions for an elliptic equation with Hardy term. Discrete & Continuous Dynamical Systems, 2009, 24 (2) : 367-380. doi: 10.3934/dcds.2009.24.367

[4]

Xiaobin Yao, Qiaozhen Ma, Tingting Liu. Asymptotic behavior for stochastic plate equations with rotational inertia and Kelvin-Voigt dissipative term on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1889-1917. doi: 10.3934/dcdsb.2018247

[5]

Yue Pang, Xingchang Wang, Furong Wu. Global existence and blowup in infinite time for a fourth order wave equation with damping and logarithmic strain terms. Discrete & Continuous Dynamical Systems - S, 2021, 14 (12) : 4439-4463. doi: 10.3934/dcdss.2021115

[6]

Ferhat Mohamed, Hakem Ali. Energy decay of solutions for the wave equation with a time-varying delay term in the weakly nonlinear internal feedbacks. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 491-506. doi: 10.3934/dcdsb.2017024

[7]

Young Hee Geum, Young Ik Kim. Long-term orbit dynamics viewed through the yellow main component in the parameter space of a family of optimal fourth-order multiple-root finders. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 3087-3109. doi: 10.3934/dcdsb.2020052

[8]

Jibin Li, Yan Zhou. Bifurcations and exact traveling wave solutions for the nonlinear Schrödinger equation with fourth-order dispersion and dual power law nonlinearity. Discrete & Continuous Dynamical Systems - S, 2020, 13 (11) : 3083-3097. doi: 10.3934/dcdss.2020113

[9]

José A. Carrillo, Ansgar Jüngel, Shaoqiang Tang. Positive entropic schemes for a nonlinear fourth-order parabolic equation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 1-20. doi: 10.3934/dcdsb.2003.3.1

[10]

Carlos Banquet, Élder J. Villamizar-Roa. On the management fourth-order Schrödinger-Hartree equation. Evolution Equations & Control Theory, 2020, 9 (3) : 865-889. doi: 10.3934/eect.2020037

[11]

Chunhua Jin, Jingxue Yin, Zejia Wang. Positive periodic solutions to a nonlinear fourth-order differential equation. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1225-1235. doi: 10.3934/cpaa.2008.7.1225

[12]

Gabriele Bonanno, Beatrice Di Bella. Fourth-order hemivariational inequalities. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 729-739. doi: 10.3934/dcdss.2012.5.729

[13]

Hideo Kubo. Asymptotic behavior of solutions to semilinear wave equations with dissipative structure. Conference Publications, 2007, 2007 (Special) : 602-613. doi: 10.3934/proc.2007.2007.602

[14]

Kosuke Ono. Global existence and asymptotic behavior of small solutions for semilinear dissipative wave equations. Discrete & Continuous Dynamical Systems, 2003, 9 (3) : 651-662. doi: 10.3934/dcds.2003.9.651

[15]

Jun Zhou. Global existence and energy decay estimate of solutions for a class of nonlinear higher-order wave equation with general nonlinear dissipation and source term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1175-1185. doi: 10.3934/dcdss.2017064

[16]

Igor Chueshov, Irena Lasiecka, Daniel Toundykov. Long-term dynamics of semilinear wave equation with nonlinear localized interior damping and a source term of critical exponent. Discrete & Continuous Dynamical Systems, 2008, 20 (3) : 459-509. doi: 10.3934/dcds.2008.20.459

[17]

Umberto Biccari, Mahamadi Warma. Null-controllability properties of a fractional wave equation with a memory term. Evolution Equations & Control Theory, 2020, 9 (2) : 399-430. doi: 10.3934/eect.2020011

[18]

Tae Gab Ha. On viscoelastic wave equation with nonlinear boundary damping and source term. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1543-1576. doi: 10.3934/cpaa.2010.9.1543

[19]

Hideo Kubo. On the pointwise decay estimate for the wave equation with compactly supported forcing term. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1469-1480. doi: 10.3934/cpaa.2015.14.1469

[20]

Pablo Álvarez-Caudevilla, Jonathan D. Evans, Victor A. Galaktionov. Gradient blow-up for a fourth-order quasilinear Boussinesq-type equation. Discrete & Continuous Dynamical Systems, 2018, 38 (8) : 3913-3938. doi: 10.3934/dcds.2018170

2020 Impact Factor: 2.425

Article outline

[Back to Top]