We consider an anisotropic double phase problem with a reaction in which we have the competing effects of a parametric singular term and a superlinear perturbation. We prove a bifurcation-type result describing the changes in the set of positive solutions as the parameter varies on $ \mathring{\mathbb{R}}_+ = (0, +\infty) $. Our approach uses variational tools together with truncation and comparison techniques as well as several general results of independent interest about anisotropic equations, which are proved in the Appendix.
Citation: |
[1] |
E. Acerbi and G. Mingione, Gradient estimates for the $p(x)$-Laplacian system, J. Reine Angew. Math., 584 (2005), 117–148.
doi: 10.1515/crll.2005.2005.584.117.![]() ![]() ![]() |
[2] |
A. M. Alghamdi, S. Gala, C. Qian and M. A. Ragusa, The anisotropic integrability logarithmic regularity criterion for the 3D MHD equations, Electron. Res. Arch., 28 (2020), 183–193.
doi: 10.3934/era.2020012.![]() ![]() ![]() |
[3] |
A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349–381.
doi: 10.1016/0022-1236(73)90051-7.![]() ![]() ![]() |
[4] |
A. Bahrouni and V. D. Rădulescu, Singular double-phase systems with variable growth for the Baouendi-Grushin operator, Discrete Contin. Dyn. Syst., 41 (2021), 4283–4296.
doi: 10.3934/dcds.2021036.![]() ![]() ![]() |
[5] |
A. Bahrouni, V. D. Rǎdulescu and D. D. Repovš, A weighted anisotropic variant of the Caffarelli-Kohn-Nirenberg inequality and applications, Nonlinearity, 31 (2018), 1516–1534.
doi: 10.1088/1361-6544/aaa5dd.![]() ![]() ![]() |
[6] |
A. Bahrouni, V. D. Rǎdulescu and D. D. Repovš, Double phase transonic flow problems with variable growth: Nonlinear patterns and stationary waves, Nonlinearity, 32 (2019), 2481–2495.
doi: 10.1088/1361-6544/ab0b03.![]() ![]() ![]() |
[7] |
J. M. Ball, Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Philos. Trans. Roy. Soc. London Ser. A, 306 (1982), 557–611.
doi: 10.1098/rsta.1982.0095.![]() ![]() ![]() |
[8] |
L. Beck and G. Mingione, Lipschitz bounds and nonuniform ellipticity, Comm. Pure Appl. Math., 73 (2020), 944–1034.
doi: 10.1002/cpa.21880.![]() ![]() ![]() |
[9] |
D. Bonheure, P. d'Avenia and A. Pomponio, On the electrostatic Born-Infeld equation with extended charges, Comm. Math. Phys., 346 (2016), 877–906.
doi: 10.1007/s00220-016-2586-y.![]() ![]() ![]() |
[10] |
H. Brezis and L. Nirenberg, $H^1$ versus $C^1$ local minimizers, C. R. Acad. Sci. Paris, Sér. I Math., 317 (1993), 465–472.
![]() ![]() |
[11] |
S.-S. Byun and E. Ko, Global $C^{1, \alpha}$ regularity and existence of multiple solutions for singular $p(x)$-Laplacian equations, Calc. Var. Partial Differential Equations, 56 (2017), Paper No. 76, 29 pp.
doi: 10.1007/s00526-017-1152-6.![]() ![]() ![]() |
[12] |
X. Chen, H. Jiang and G. Liu, Boundary spike of the singular limit of an energy minimizing problem, Discrete Contin. Dyn. Syst., 40 (2020), 3253–3290.
doi: 10.3934/dcds.2020124.![]() ![]() ![]() |
[13] |
M. G. Crandall, P. H. Rabinowitz and L. Tartar, On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations, 2 (1977), 193–222.
doi: 10.1080/03605307708820029.![]() ![]() ![]() |
[14] |
L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math, Vol. 2017, Springer, Heidelberg, 2011.
doi: 10.1007/978-3-642-18363-8.![]() ![]() ![]() |
[15] |
X. Fan, Q. Zhang and D. Zhao, Eigenvalues of $p(x)$-Laplacian Dirichlet problem, J. Math. Anal. Appl., 302 (2005), 306–317.
doi: 10.1016/j.jmaa.2003.11.020.![]() ![]() ![]() |
[16] |
X. Fan and D. Zhao, A class of De Giorgi type and Hölder continuity, Nonlinear Anal., 36 (1999), 295–318.
doi: 10.1016/S0362-546X(97)00628-7.![]() ![]() ![]() |
[17] |
N. Fukagai and K. Narukawa, On the existence of multiple positive solutions of quasilinear elliptic eigenvalue problems, Annali Mat. Pura Appl., 186 (2007), 539–564.
doi: 10.1007/s10231-006-0018-x.![]() ![]() ![]() |
[18] |
J. P. García Azorero, I. Peral Alonso and J. J. Manfredi, Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations, Comm. Contemp. Math., 2 (2000), 385–404.
doi: 10.1142/S0219199700000190.![]() ![]() ![]() |
[19] |
L. Gasiński and N. S. Papageorgiou, Nonlinear Analysis, Chapman & Hall / CRC, Boca Raton FL, 2006.
![]() ![]() |
[20] |
L. Gasiński and N. S. Papageorgiou, Anisotropic nonlinear Neumann problems, Calc. Var. Partial Differential Equations, 42 (2011), 323–354.
doi: 10.1007/s00526-011-0390-2.![]() ![]() ![]() |
[21] |
L. Gasiński and N. S. Papageorgiou, Multiple solutions for nonlinear coercive problems with a nonhomogeneous differential operator and a nonsmooth potential, Set-Valued Var. Anal., 20 (2012), 417–443.
doi: 10.1007/s11228-011-0198-4.![]() ![]() ![]() |
[22] |
L. Gasiński and N. S. Papageorgiou, Exercises in Analysis: Part 1, Problem Books in Mathematics, Springer, Cham, 2014.
![]() ![]() |
[23] |
M. Ghergu and V. Rǎdulescu, Sublinear singular elliptic problems with two parameters, J. Differential Equations, 195 (2003), 520–536.
doi: 10.1016/S0022-0396(03)00105-0.![]() ![]() ![]() |
[24] |
M. Ghergu and V. D. Rǎdulescu, Singular Elliptic Problems: Bifurcation and Asymptotic Analysis, Clarendon Press, Oxford, 2008.
![]() ![]() |
[25] |
J. Giacomoni, I. Schindler and P. Takáč, Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation, Ann. Scuola Norm. Sup. Pisa, Cl. Sci., 6 (2007), 117–158.
![]() ![]() |
[26] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001.
![]() ![]() |
[27] |
Y. Haitao, Multiplicity and asymptotic behavior of positive solutions for a singular semilinear elliptic problem, J. Differential Equations, 189 (2003), 487–512.
doi: 10.1016/S0022-0396(02)00098-0.![]() ![]() ![]() |
[28] |
T. C. Halsey, Electrorheological fluids, Science, 258 (1992), 761–766.
![]() |
[29] |
P. Harjuletho, P. Hästö and M. Koskenoja, Hardy's inequality in a variable exponent Sobolev space, Georgian Math. J., 12 (2005), 431–442.
![]() ![]() |
[30] |
S. Hu and N. S. Papageorgiou, Nonlinear Neumann equations driven by a nonhomogeneous differential operator, Comm. Pure Appl. Anal., 10 (2011), 1055–1078.
doi: 10.3934/cpaa.2011.10.1055.![]() ![]() ![]() |
[31] |
O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968.
![]() ![]() |
[32] |
A. C. Lazer and P. J. McKenna, On a singular nonlinear elliptic boundary value problem, Proc. Amer. Math. Soc., 111 (1991), 721–730.
doi: 10.1090/S0002-9939-1991-1037213-9.![]() ![]() ![]() |
[33] |
G. M. Lieberman, The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations, Comm. Partial Differential Equations, 16 (1991), 311–361.
doi: 10.1080/03605309108820761.![]() ![]() ![]() |
[34] |
P. Marcellini, On the definition and the lower semicontinuity of certain quasiconvex integrals, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 3 (1986), 391–409.
doi: 10.1016/S0294-1449(16)30379-1.![]() ![]() ![]() |
[35] |
P. Marcellini, Regularity and existence of solutions of elliptic equations with $p, q$–growth conditions, J. Differential Equations, 90 (1991), 1–30.
doi: 10.1016/0022-0396(91)90158-6.![]() ![]() ![]() |
[36] |
G. Marino and P. Winkert, Moser iteration applied to elliptic equations with critical growth on the boundary, Nonlinear Anal., 180 (2019), 154–169.
doi: 10.1016/j.na.2018.10.002.![]() ![]() ![]() |
[37] |
G. Marino and P. Winkert, $L^\infty$-bounds for general singular elliptic equations with convection term, Appl. Math. Lett., 107 (2020), 106410, 6 pp.
doi: 10.1016/j.aml.2020.106410.![]() ![]() ![]() |
[38] |
G. Mingione and V. Rădulescu, Recent developments in problems with nonstandard growth and nonuniform ellipticity, J. Math. Anal. Appl., 501 (2021), 125197, 41 pp.
doi: 10.1016/j.jmaa.2021.125197.![]() ![]() ![]() |
[39] |
N. S. Papageorgiou and V. D. Rǎdulescu, Nonlinear nonhomogeneous Robin problems with a superlinear reaction term, Adv. Nonlinear Stud., 16 (2016), 737–764.
doi: 10.1515/ans-2016-0023.![]() ![]() ![]() |
[40] |
N. S. Papageorgiou, V. D. Rǎdulescu and D. D. Repovš, Positive solutions for nonlinear parametric singular Dirichlet problems, Bull. Math. Sci., 9 (2019), 1950011, 21 pp.
doi: 10.1142/S1664360719500115.![]() ![]() ![]() |
[41] |
N. S. Papageorgiou, V. D. Rǎdulescu and D. D. Repovš, Nonlinear nonhomogeneous singular problems, Calc. Var. Partial Differential Equations, 59 (2020), Paper No. 9, 31 pp.
doi: 10.1007/s00526-019-1667-0.![]() ![]() ![]() |
[42] |
N. S. Papageorgiou, V. D. Rǎdulescu and D. D. Repovš, Nonlinear Analysis-Theory and Methods, Springer Monographs in Mathematics, Springer Nature, Cham, 2019.
doi: 10.1007/978-3-030-03430-6.![]() ![]() ![]() |
[43] |
N. S. Papageorgiou, V. D. Rǎdulescu and D. D. Repovš, Anisotropic equations with indefinite potential and competing nonlinearities, Nonlinear Anal., 201 (2020), 111861, 24 pp.
doi: 10.1016/j.na.2020.111861.![]() ![]() ![]() |
[44] |
N. S. Papageorgiou and A. Scapellato, Constant sign and nodal solutions for parametric $(p, 2)$-equations, Adv. Nonlinear Anal., 9 (2020), 449–478.
doi: 10.1515/anona-2020-0009.![]() ![]() ![]() |
[45] |
N. S. Papageorgiou, C. Vetro and F. Vetro, Parametric nonlinear singular Dirichlet problems, Nonlinear Anal. Real World Appl., 45 (2019), 239–254.
doi: 10.1016/j.nonrwa.2018.07.006.![]() ![]() ![]() |
[46] |
N. S. Papageorgiou, C. Vetro and F. Vetro, Multiple solutions for $(p, 2)$-equations at resonance, Discrete Contin. Dyn. Syst. Ser. S, 12 (2019), 347–374.
doi: 10.3934/dcdss.2019024.![]() ![]() ![]() |
[47] |
N. S. Papageorgiou, C. Vetro and F. Vetro, Multiple solutions for parametric double phase Dirichlet problems, Comm. Contemp. Math., 23 (2021), 2050006, 18 pp.
doi: 10.1142/S0219199720500066.![]() ![]() ![]() |
[48] |
N. S. Papageorgiou and P. Winkert, Applied Nonlinear Functional Analysis, De Gruyter, Berlin, 2018.
![]() ![]() |
[49] |
N. S. Papageorgiou and P. Winkert, Singular $p$-Laplacian equations with superlinear perturbation, J. Differential Equations, 266 (2019), 1462–1487.
doi: 10.1016/j.jde.2018.08.002.![]() ![]() ![]() |
[50] |
N. S. Papageorgiou and C. Zhang, Noncoercive resonant $(p, 2)$-equations with concave terms, Adv. Nonlinear Anal., 9 (2020), 228–249.
doi: 10.1515/anona-2018-0175.![]() ![]() ![]() |
[51] |
N. S. Papageorgiou and Y. Zhang, Constant sign and nodal solutions for superlinear $(p, q)$-equations with indefinite potential and concave boundary condition, Adv. Nonlinear Anal., 10 (2021), 76–101.
doi: 10.1515/anona-2020-0101.![]() ![]() ![]() |
[52] |
V. D. Rǎdulescu and D. D. Repovš, Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis, CRC Press, Boca Raton, FL, 2015.
doi: 10.1201/b18601.![]() ![]() ![]() |
[53] |
M. A. Ragusa and A. Tachikawa, Regularity for minimizers for functionals of double phase with variable exponents, Adv. Nonlinear Anal., 9 (2020), 710–728.
doi: 10.1515/anona-2020-0022.![]() ![]() ![]() |
[54] |
K. Saoudi and A. Ghanmi, A multiplicity result for a singular equation involving the $p(x)$-Laplace operator, Complex Var. Elliptic Equ., 62 (2017), 695–725.
doi: 10.1080/17476933.2016.1238466.![]() ![]() ![]() |
[55] |
Y. Sun, S. Wu and Y. Long, Combined effects of singular and superlinear nonlinearities in some singular boundary value problems, J. Differential Equations, 176 (2001), 511–531.
doi: 10.1006/jdeq.2000.3973.![]() ![]() ![]() |
[56] |
P. Winkert, $L^\infty$-estimates for nonlinear elliptic Neumann boundary value problems, Nonlin. Differ. Equ. Appl. (NoDEA), 17 (2010), 289–310.
doi: 10.1007/s00030-009-0054-5.![]() ![]() ![]() |
[57] |
W. M. Winslow, Induced fibration of suspensions, J. Appl. Phys., 20 (1949), 1137–1140.
doi: 10.1063/1.1698285.![]() ![]() |
[58] |
M. Xiang, B. Zhang and D. Hu, Kirchhoff-type differential inclusion problems involving the fractional Laplacian and strong damping, Electron. Res. Arch., 28 (2020), 651–669.
doi: 10.3934/era.2020034.![]() ![]() ![]() |
[59] |
Q. Zhang, A strong maximum principle for differential equations with nonstandard $p(x)$-growth conditions, J. Math. Anal. Appl., 312 (2005), 24–32.
doi: 10.1016/j.jmaa.2005.03.013.![]() ![]() ![]() |
[60] |
Q. Zhang and V. D. Rǎdulescu, Double phase anisotropic variational problems and combined effects of reaction and absorption terms, J. Math. Pures Appl., 118 (2018), 159–203.
doi: 10.1016/j.matpur.2018.06.015.![]() ![]() ![]() |
[61] |
Y. Zhang and M. Feng, A coupled $p$-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior, Electron. Res. Arch., 28 (2020), 1419–1438.
doi: 10.3934/era.2020075.![]() ![]() ![]() |
[62] |
M. Zhen, B. Zhang and V. D. Rădulescu, Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case, Discrete Contin. Dyn. Syst., 41 (2021), 2653–2676.
doi: 10.3934/dcds.2020379.![]() ![]() ![]() |
[63] |
V. V. Zhikov, On variational problems and nonlinear elliptic equations with nonstandard growth conditions, J. Math. Sci., 173 (2011), 463–570.
doi: 10.1007/s10958-011-0260-7.![]() ![]() ![]() |