-
Previous Article
Inviscid limit for the damped generalized incompressible Navier-Stokes equations on $ \mathbb{T}^2 $
- DCDS-S Home
- This Issue
-
Next Article
Global existence, exponential decay and blow-up of solutions for a class of fractional pseudo-parabolic equations with logarithmic nonlinearity
A class of fourth-order nonlinear parabolic equations modeling the epitaxial growth of thin films
1. | College of Mathematics and Computer Science, Northwest Minzu University, Lanzhou 730030, China |
2. | College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China |
In this paper, the initial-boundary value problem for a class of fourth-order nonlinear parabolic equations modeling the epitaxial growth of thin films is studied. By means of the theory of potential wells, the global existence, asymptotic behavior and finite time blow-up of weak solutions are obtained.
References:
[1] |
L. Agélas,
Global regularity of solutions of equation modeling epitaxy thin film growth in $\mathbb{R}^d$, $d = 1, 2$, J. Evol. Equ., 15 (2015), 89-106.
doi: 10.1007/s00028-014-0250-6. |
[2] |
D. Blömker and C. Gugg,
On the existence of solutions for amorphous molecular beam epitaxy, Nonlinear Anal. Real World Appl., 3 (2002), 61-73.
doi: 10.1016/S1468-1218(01)00013-X. |
[3] |
D. Blömker, C. Gugg and M. Raible,
Thin-film-growth models: Roughness and correlation functions, Eur. J. Appl. Math., 13 (2002), 385-402.
doi: 10.1017/S0956792502004886. |
[4] |
M. Capiński and D. Gatarek,
Stochastic equations in Hilbert space with applications to Navier-Stokes equation in any dimensions, J. Functional Anal., 126 (1994), 26-35.
doi: 10.1006/jfan.1994.1140. |
[5] |
H. Chen and H. Xu,
Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity, Discrete Contin. Dyn. Syst., 39 (2019), 1185-1203.
doi: 10.3934/dcds.2019051. |
[6] |
S. Das Sarma and S. V. Ghaisas,
Solid-on-solid rules and models for nonequilibrium growth in $2+1$ dimensions, Phys. Rev. Lett., 69 (1992), 3762-3765.
|
[7] |
M. Dimova, N. Kolkovska and N. Kutev,
Global behavior of the solutions to nonlinear Klein-Gordon equation with critical initial energy, Elec. Res. Arch., 28 (2020), 671-689.
doi: 10.3934/era.2020035. |
[8] |
J. A. Esquivel-Avila,
Blow-up in damped abstract nonlinear equations, Elec. Res. Arch., 28 (2020), 347-367.
doi: 10.3934/era.2020020. |
[9] |
J. M. Kim and S. Das Sarma,
Discrete models for conserved growth equations, Phys. Rev. Lett., 72 (1994), 2903-2906.
doi: 10.1103/PhysRevLett.72.2903. |
[10] |
B. B. King, O. Stein and M. Winkler,
A fourth-order parabolic equation modeling epitaxial thin film growth, J. Math. Anal. Appl., 286 (2003), 459-490.
doi: 10.1016/S0022-247X(03)00474-8. |
[11] |
R. V. Kohn and X. Yan,
Upper bound on the coarsening rate for an epitaxial growth model, Comm. Pure Appl. Math., 56 (2003), 1549-1564.
doi: 10.1002/cpa.10103. |
[12] |
W. Lian and R. Xu,
Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term, Adv. Nonlinear Anal., 9 (2020), 613-632.
doi: 10.1515/anona-2020-0016. |
[13] |
M. Liao, Q. Liu and H. Ye,
Global existence and blow-up of weak solutions for a class of fractional $p$-Laplacian evolution equations, Adv. Nonlinear Anal., 9 (2020), 1569-1591.
doi: 10.1515/anona-2020-0066. |
[14] |
J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Paris, 1969. |
[15] |
W. Liu, Z. Chen and Z. Tu,
New general decay result for a fourth-order Moore-Gibson-Thompson equation with memory, Elec. Res. Arch., 28 (2020), 433-457.
doi: 10.3934/era.2020025. |
[16] |
Y. Liu,
Long-time behavior of a class of viscoelastic plate equations, Elec. Res. Arch., 28 (2020), 311-326.
doi: 10.3934/era.2020018. |
[17] |
Y. Liu and J. Zhao,
On potential wells and applications to semilinear hyperbolic equations and parabolic equations, Nonlinear Anal., 64 (2006), 2665-2687.
doi: 10.1016/j.na.2005.09.011. |
[18] |
W. W. Mullins,
Theory of thermal grooving, J. Appl. Phys., 28 (1957), 333-339.
doi: 10.1063/1.1722742. |
[19] |
T. Niimura,
Attractors and their stability with respect to rotational inertia for nonlocal extensible beam equations, Discrete Contin. Dyn. Syst., 40 (2020), 2561-2591.
doi: 10.3934/dcds.2020141. |
[20] |
M. Ortiz, E. A. Repetto and H. Si,
A continuum model of kinetic roughening and coarsening in thin films, J. Mech. Phys. Solids, 47 (1999), 697-730.
doi: 10.1016/S0022-5096(98)00102-1. |
[21] |
L. E. Payne and D. H. Sattinger,
Sadle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273-303.
doi: 10.1007/BF02761595. |
[22] |
T. P. Schulze and R. V. Kohn,
A geometric model for coarsening during spiral-mode growth of thin films, Phys. D, 132 (1999), 520-542.
doi: 10.1016/S0167-2789(99)00108-6. |
[23] |
O. Stein and M. Winkler,
Amorphous molecular beam epitaxy: Global solutions and absorbing sets, Eur. J. Appl. Math., 16 (2005), 767-798.
doi: 10.1017/S0956792505006315. |
[24] |
X. Wang and R. Xu,
Global existence and finite time blowup for a nonlocal semilinear pseudo-parabolic equation, Adv. Nonlinear Anal., 10 (2021), 261-288.
doi: 10.1515/anona-2020-0141. |
[25] |
M. Winkler,
Global solutions in higher dimensions to a fourth order parabolic equation modeling epitaxial thin film growth, Z. Angew. Math. Phys., 62 (2011), 575-608.
doi: 10.1007/s00033-011-0128-1. |
[26] |
R. Xu and J. Su,
Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), 2732-2763.
doi: 10.1016/j.jfa.2013.03.010. |
[27] |
R. Xu, M. Zhang, S. Chen, Y. Yang and J. Shen,
The initial-boundary value problems for a class of six order nonlinear wave equation, Discrete Contin. Dyn. Syst., 37 (2017), 5631-5649.
doi: 10.3934/dcds.2017244. |
[28] |
X.-G. Yang, M. J. D. Nascimento and M. L. Pelicer,
Uniform attractors for non-autonomous plate equations with $p$-Laplacian perturbation and critical nonlinearities, Discrete Contin. Dyn. Syst., 40 (2020), 1937-1961.
doi: 10.3934/dcds.2020100. |
[29] |
Z. Yang,
Global existence, asymptotic behavior and blowup of solutions for a class of nonlinear wave equations with dissipative term, J. Differential Equations, 187 (2003), 520-540.
|
[30] |
A. Zangwill,
Some causes and a consequence of epitaxial roughening, J. Crystal Growth, 163 (1996), 8-21.
doi: 10.1016/0022-0248(95)01048-3. |
[31] |
M. Zhang and M. S. Ahmed,
Sharp conditions of global existence for nonlinear Schrödinger equation with a harmonic potential, Adv. Nonlinear Anal., 9 (2020), 882-894.
doi: 10.1515/anona-2020-0031. |
[32] |
X. Zhao and C. Liu,
Time-periodic solution of a 2D fourth-order nonlinear parabolic equation, Proc. Indian Acad. Sci. (Math. Sci.), 124 (2014), 349-364.
doi: 10.1007/s12044-014-0180-9. |
show all references
References:
[1] |
L. Agélas,
Global regularity of solutions of equation modeling epitaxy thin film growth in $\mathbb{R}^d$, $d = 1, 2$, J. Evol. Equ., 15 (2015), 89-106.
doi: 10.1007/s00028-014-0250-6. |
[2] |
D. Blömker and C. Gugg,
On the existence of solutions for amorphous molecular beam epitaxy, Nonlinear Anal. Real World Appl., 3 (2002), 61-73.
doi: 10.1016/S1468-1218(01)00013-X. |
[3] |
D. Blömker, C. Gugg and M. Raible,
Thin-film-growth models: Roughness and correlation functions, Eur. J. Appl. Math., 13 (2002), 385-402.
doi: 10.1017/S0956792502004886. |
[4] |
M. Capiński and D. Gatarek,
Stochastic equations in Hilbert space with applications to Navier-Stokes equation in any dimensions, J. Functional Anal., 126 (1994), 26-35.
doi: 10.1006/jfan.1994.1140. |
[5] |
H. Chen and H. Xu,
Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity, Discrete Contin. Dyn. Syst., 39 (2019), 1185-1203.
doi: 10.3934/dcds.2019051. |
[6] |
S. Das Sarma and S. V. Ghaisas,
Solid-on-solid rules and models for nonequilibrium growth in $2+1$ dimensions, Phys. Rev. Lett., 69 (1992), 3762-3765.
|
[7] |
M. Dimova, N. Kolkovska and N. Kutev,
Global behavior of the solutions to nonlinear Klein-Gordon equation with critical initial energy, Elec. Res. Arch., 28 (2020), 671-689.
doi: 10.3934/era.2020035. |
[8] |
J. A. Esquivel-Avila,
Blow-up in damped abstract nonlinear equations, Elec. Res. Arch., 28 (2020), 347-367.
doi: 10.3934/era.2020020. |
[9] |
J. M. Kim and S. Das Sarma,
Discrete models for conserved growth equations, Phys. Rev. Lett., 72 (1994), 2903-2906.
doi: 10.1103/PhysRevLett.72.2903. |
[10] |
B. B. King, O. Stein and M. Winkler,
A fourth-order parabolic equation modeling epitaxial thin film growth, J. Math. Anal. Appl., 286 (2003), 459-490.
doi: 10.1016/S0022-247X(03)00474-8. |
[11] |
R. V. Kohn and X. Yan,
Upper bound on the coarsening rate for an epitaxial growth model, Comm. Pure Appl. Math., 56 (2003), 1549-1564.
doi: 10.1002/cpa.10103. |
[12] |
W. Lian and R. Xu,
Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term, Adv. Nonlinear Anal., 9 (2020), 613-632.
doi: 10.1515/anona-2020-0016. |
[13] |
M. Liao, Q. Liu and H. Ye,
Global existence and blow-up of weak solutions for a class of fractional $p$-Laplacian evolution equations, Adv. Nonlinear Anal., 9 (2020), 1569-1591.
doi: 10.1515/anona-2020-0066. |
[14] |
J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Paris, 1969. |
[15] |
W. Liu, Z. Chen and Z. Tu,
New general decay result for a fourth-order Moore-Gibson-Thompson equation with memory, Elec. Res. Arch., 28 (2020), 433-457.
doi: 10.3934/era.2020025. |
[16] |
Y. Liu,
Long-time behavior of a class of viscoelastic plate equations, Elec. Res. Arch., 28 (2020), 311-326.
doi: 10.3934/era.2020018. |
[17] |
Y. Liu and J. Zhao,
On potential wells and applications to semilinear hyperbolic equations and parabolic equations, Nonlinear Anal., 64 (2006), 2665-2687.
doi: 10.1016/j.na.2005.09.011. |
[18] |
W. W. Mullins,
Theory of thermal grooving, J. Appl. Phys., 28 (1957), 333-339.
doi: 10.1063/1.1722742. |
[19] |
T. Niimura,
Attractors and their stability with respect to rotational inertia for nonlocal extensible beam equations, Discrete Contin. Dyn. Syst., 40 (2020), 2561-2591.
doi: 10.3934/dcds.2020141. |
[20] |
M. Ortiz, E. A. Repetto and H. Si,
A continuum model of kinetic roughening and coarsening in thin films, J. Mech. Phys. Solids, 47 (1999), 697-730.
doi: 10.1016/S0022-5096(98)00102-1. |
[21] |
L. E. Payne and D. H. Sattinger,
Sadle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273-303.
doi: 10.1007/BF02761595. |
[22] |
T. P. Schulze and R. V. Kohn,
A geometric model for coarsening during spiral-mode growth of thin films, Phys. D, 132 (1999), 520-542.
doi: 10.1016/S0167-2789(99)00108-6. |
[23] |
O. Stein and M. Winkler,
Amorphous molecular beam epitaxy: Global solutions and absorbing sets, Eur. J. Appl. Math., 16 (2005), 767-798.
doi: 10.1017/S0956792505006315. |
[24] |
X. Wang and R. Xu,
Global existence and finite time blowup for a nonlocal semilinear pseudo-parabolic equation, Adv. Nonlinear Anal., 10 (2021), 261-288.
doi: 10.1515/anona-2020-0141. |
[25] |
M. Winkler,
Global solutions in higher dimensions to a fourth order parabolic equation modeling epitaxial thin film growth, Z. Angew. Math. Phys., 62 (2011), 575-608.
doi: 10.1007/s00033-011-0128-1. |
[26] |
R. Xu and J. Su,
Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), 2732-2763.
doi: 10.1016/j.jfa.2013.03.010. |
[27] |
R. Xu, M. Zhang, S. Chen, Y. Yang and J. Shen,
The initial-boundary value problems for a class of six order nonlinear wave equation, Discrete Contin. Dyn. Syst., 37 (2017), 5631-5649.
doi: 10.3934/dcds.2017244. |
[28] |
X.-G. Yang, M. J. D. Nascimento and M. L. Pelicer,
Uniform attractors for non-autonomous plate equations with $p$-Laplacian perturbation and critical nonlinearities, Discrete Contin. Dyn. Syst., 40 (2020), 1937-1961.
doi: 10.3934/dcds.2020100. |
[29] |
Z. Yang,
Global existence, asymptotic behavior and blowup of solutions for a class of nonlinear wave equations with dissipative term, J. Differential Equations, 187 (2003), 520-540.
|
[30] |
A. Zangwill,
Some causes and a consequence of epitaxial roughening, J. Crystal Growth, 163 (1996), 8-21.
doi: 10.1016/0022-0248(95)01048-3. |
[31] |
M. Zhang and M. S. Ahmed,
Sharp conditions of global existence for nonlinear Schrödinger equation with a harmonic potential, Adv. Nonlinear Anal., 9 (2020), 882-894.
doi: 10.1515/anona-2020-0031. |
[32] |
X. Zhao and C. Liu,
Time-periodic solution of a 2D fourth-order nonlinear parabolic equation, Proc. Indian Acad. Sci. (Math. Sci.), 124 (2014), 349-364.
doi: 10.1007/s12044-014-0180-9. |
[1] |
Jinxing Liu, Xiongrui Wang, Jun Zhou, Huan Zhang. Blow-up phenomena for the sixth-order Boussinesq equation with fourth-order dispersion term and nonlinear source. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4321-4335. doi: 10.3934/dcdss.2021108 |
[2] |
Filippo Gazzola, Paschalis Karageorgis. Refined blow-up results for nonlinear fourth order differential equations. Communications on Pure and Applied Analysis, 2015, 14 (2) : 677-693. doi: 10.3934/cpaa.2015.14.677 |
[3] |
Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399 |
[4] |
Pablo Álvarez-Caudevilla, Jonathan D. Evans, Victor A. Galaktionov. Gradient blow-up for a fourth-order quasilinear Boussinesq-type equation. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3913-3938. doi: 10.3934/dcds.2018170 |
[5] |
Alan E. Lindsay. An asymptotic study of blow up multiplicity in fourth order parabolic partial differential equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 189-215. doi: 10.3934/dcdsb.2014.19.189 |
[6] |
Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71 |
[7] |
Mingyou Zhang, Qingsong Zhao, Yu Liu, Wenke Li. Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition. Electronic Research Archive, 2020, 28 (1) : 369-381. doi: 10.3934/era.2020021 |
[8] |
Chao Yang, Yanbing Yang. Long-time behavior for fourth-order wave equations with strain term and nonlinear weak damping term. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4643-4658. doi: 10.3934/dcdss.2021110 |
[9] |
Marcel Braukhoff, Ansgar Jüngel. Entropy-dissipating finite-difference schemes for nonlinear fourth-order parabolic equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3335-3355. doi: 10.3934/dcdsb.2020234 |
[10] |
José A. Carrillo, Ansgar Jüngel, Shaoqiang Tang. Positive entropic schemes for a nonlinear fourth-order parabolic equation. Discrete and Continuous Dynamical Systems - B, 2003, 3 (1) : 1-20. doi: 10.3934/dcdsb.2003.3.1 |
[11] |
Monica Marras, Stella Vernier Piro. On global existence and bounds for blow-up time in nonlinear parabolic problems with time dependent coefficients. Conference Publications, 2013, 2013 (special) : 535-544. doi: 10.3934/proc.2013.2013.535 |
[12] |
Hua Chen, Nian Liu. Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 661-682. doi: 10.3934/dcds.2016.36.661 |
[13] |
Qiong Chen, Chunlai Mu, Zhaoyin Xiang. Blow-up and asymptotic behavior of solutions to a semilinear integrodifferential system. Communications on Pure and Applied Analysis, 2006, 5 (3) : 435-446. doi: 10.3934/cpaa.2006.5.435 |
[14] |
Jorge A. Esquivel-Avila. Blow-up in damped abstract nonlinear equations. Electronic Research Archive, 2020, 28 (1) : 347-367. doi: 10.3934/era.2020020 |
[15] |
Hua Chen, Huiyang Xu. Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1185-1203. doi: 10.3934/dcds.2019051 |
[16] |
Wenjun Liu, Jiangyong Yu, Gang Li. Global existence, exponential decay and blow-up of solutions for a class of fractional pseudo-parabolic equations with logarithmic nonlinearity. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4337-4366. doi: 10.3934/dcdss.2021121 |
[17] |
Frank Merle, Hatem Zaag. O.D.E. type behavior of blow-up solutions of nonlinear heat equations. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 435-450. doi: 10.3934/dcds.2002.8.435 |
[18] |
Nguyen Thanh Long, Hoang Hai Ha, Le Thi Phuong Ngoc, Nguyen Anh Triet. Existence, blow-up and exponential decay estimates for a system of nonlinear viscoelastic wave equations with nonlinear boundary conditions. Communications on Pure and Applied Analysis, 2020, 19 (1) : 455-492. doi: 10.3934/cpaa.2020023 |
[19] |
Monica Marras, Stella Vernier-Piro, Giuseppe Viglialoro. Blow-up phenomena for nonlinear pseudo-parabolic equations with gradient term. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2291-2300. doi: 10.3934/dcdsb.2017096 |
[20] |
Pavol Quittner, Philippe Souplet. Blow-up rate of solutions of parabolic poblems with nonlinear boundary conditions. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 671-681. doi: 10.3934/dcdss.2012.5.671 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]