• Previous Article
    A class of fourth-order nonlinear parabolic equations modeling the epitaxial growth of thin films
  • DCDS-S Home
  • This Issue
  • Next Article
    Blow-up phenomena for the sixth-order Boussinesq equation with fourth-order dispersion term and nonlinear source
December  2021, 14(12): 4337-4366. doi: 10.3934/dcdss.2021121

Global existence, exponential decay and blow-up of solutions for a class of fractional pseudo-parabolic equations with logarithmic nonlinearity

School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China

* Corresponding author

Received  July 2021 Revised  September 2021 Published  December 2021 Early access  October 2021

In this paper, we study the fractional pseudo-parabolic equations $ u_{t} + \left(-\Delta\right)^{s} u + \left(-\Delta\right)^{s} u_{t} = u\log \left| u \right| $. Firstly, we recall the relationship between the fractional Laplace operator $ \left(-\Delta\right)^{s} $ and the fractional Sobolev space $ H^{s} $ and discuss the invariant sets and the vacuum isolating behavior of solutions with the help of a family of potential wells. Then, we derive a threshold result of existence of weak solution: for the low initial energy case (i.e., $ J(u_{0}) < d $), the solution is global in time with $ I(u_{0}) >0 $ or $ \Vert u_{0}\Vert_{{X_{0}(\Omega)}} = 0 $ and blows up at $ +\infty $ with $ I(u_{0}) < 0 $; for the critical initial energy case (i.e., $ J(u_{0}) = d $), the solution is global in time with $ I(u_{0}) \geq0 $ and blows up at $ +\infty $ with $ I(u_{0}) < 0 $. The decay estimate of the energy functional for the global solution is also given.

Citation: Wenjun Liu, Jiangyong Yu, Gang Li. Global existence, exponential decay and blow-up of solutions for a class of fractional pseudo-parabolic equations with logarithmic nonlinearity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (12) : 4337-4366. doi: 10.3934/dcdss.2021121
References:
[1]

A. AlsaediB. AhmadM. Kirane and B. T. Torebek, Blowing-up solutions of the time-fractional dispersive equations, Adv. Nonlinear Anal., 10 (2021), 952-971.  doi: 10.1515/anona-2020-0153.  Google Scholar

[2]

D. Applebaum, Lévy processes–-from probability to finance and quantum groups, Notices Amer. Math. Soc., 51 (2004), 1336-1347.   Google Scholar

[3]

D. Applebaum, Lévy Processes and Stochastic Calculus, second edition, Cambridge Studies in Advanced Mathematics, 116, Cambridge University Press, Cambridge, 2009. doi: 10.1017/CBO9780511809781.  Google Scholar

[4]

V. V. Au et al., On a final value problem for a nonlinear fractional pseudo-parabolic equation, Electron. Res. Arch., 29 (2021), 1709-1734.  doi: 10.3934/era.2020088.  Google Scholar

[5]

T. B. BenjaminJ. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Roy. Soc. London Ser. A, 272 (1972), 47-78.  doi: 10.1098/rsta.1972.0032.  Google Scholar

[6]

J. Bertoin, Lévy Processes, Cambridge Tracts in Mathematics, 121, Cambridge University Press, Cambridge, 1996.  Google Scholar

[7] G. M. BisciV. D. Radulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems, Encyclopedia of Mathematics and its Applications, 162, Cambridge University Press, Cambridge, 2016.  doi: 10.1017/CBO9781316282397.  Google Scholar
[8]

C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, Lecture Notes of the Unione Matematica Italiana, 20, Springer, 2016. doi: 10.1007/978-3-319-28739-3.  Google Scholar

[9]

H. ChenP. Luo and G. Liu, Global solution and blow-up of a semilinear heat equation with logarithmic nonlinearity, J. Math. Anal. Appl., 422 (2015), 84-98.  doi: 10.1016/j.jmaa.2014.08.030.  Google Scholar

[10]

H. Chen and S. Tian, Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differential Equations, 258 (2015), 4424-4442.  doi: 10.1016/j.jde.2015.01.038.  Google Scholar

[11]

H. Chen and H. Xu, Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity, Discrete Contin. Dyn. Syst., 39 (2019), 1185-1203.  doi: 10.3934/dcds.2019051.  Google Scholar

[12]

A. Cotsiolis and N. K. Tavoularis, On logarithmic Sobolev inequalities for higher order fractional derivatives, C. R. Math. Acad. Sci. Paris, 340 (2005), 205-208.  doi: 10.1016/j.crma.2004.11.030.  Google Scholar

[13]

A. de PabloF. QuirósA. Rodriguez and J. L. Vázquez, A fractional porous medium equation, Adv. Math., 226 (2011), 1378-1409.  doi: 10.1016/j.aim.2010.07.017.  Google Scholar

[14]

A. de PabloF. QuirósA. Rodriguez and J. L. Vázquez, A general fractional porous medium equation, Comm. Pure Appl. Math., 65 (2012), 1242-1284.  doi: 10.1002/cpa.21408.  Google Scholar

[15]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[16]

H. DiY. Shang and X. Peng, Blow-up phenomena for a pseudo-parabolic equation with variable exponents, Appl. Math. Lett., 64 (2017), 67-73.  doi: 10.1016/j.aml.2016.08.013.  Google Scholar

[17]

H. DiY. Shang and X. Zheng, Global well-posedness for a fourth order pseudo-parabolic equation with memory and source terms, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 781-801.  doi: 10.3934/dcdsb.2016.21.781.  Google Scholar

[18]

S. Dipierro, M. Medina and E. Valdinoci, Fractional Elliptic Problems with Critical Growth in the Whole of $\mathbb{R}^n$, Appunti. Scuola Normale Superiore di Pisa (Nuova Serie), 15, Edizioni della Normale, Pisa, 2017. doi: 10.1007/978-88-7642-601-8.  Google Scholar

[19]

A. A. DubkovB. Spagnolo and V. V. Uchaikin, Lévy flight superdiffusion: An introduction, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18 (2008), 2649-2672.  doi: 10.1142/S0218127408021877.  Google Scholar

[20]

Y. Fu and P. Pucci, On solutions of space-fractional diffusion equations by means of potential wells, Electron. J. Qual. Theory Differ. Equ., 2016 (2016), Paper No. 70, 17 pp. doi: 10.14232/ejqtde.2016.1.70.  Google Scholar

[21]

L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math., 97 (1975), 1061-1083.  doi: 10.2307/2373688.  Google Scholar

[22]

N. E. Humphries et al., Environmental context explains Levy and Brownian movement patterns of marine predators, Nature, 465 (2010), 1066-1069.  doi: 10.1038/nature09116.  Google Scholar

[23]

J. D. Kečkić and P. M. Vasić, Some inequalities for the gamma function, Publ. Inst. Math., (Beograd) (N.S.), 11 (1971), 107–114.  Google Scholar

[24]

M. O. Korpusov and A. G. Sveshnikov, Blow-up of solutions of Sobolev-type nonlinear equations with cubic sources, Differ. Equ., 42 (2006), 431-443.  doi: 10.1134/S001226610603013X.  Google Scholar

[25]

G. Li, J. Yu and W. Liu, Global existence, exponential decay and finite time blow-up of solutions for a class of semilinear pseudo-parabolic equations with conical degeneration, J. Pseudo-Differ. Oper. Appl., 8 (2017), 629–660. doi: 10.1007/s11868-017-0216-x.  Google Scholar

[26]

M. LiaoQ. Liu and H. Ye, Global existence and blow-up of weak solutions for a class of fractional $p$-Laplacian evolution equations, Adv. Nonlinear Anal., 9 (2020), 1569-1591.  doi: 10.1515/anona-2020-0066.  Google Scholar

[27]

G. Liu, The existence, general decay and blow-up for a plate equation with nonlinear damping and a logarithmic source term, Electron. Res. Arch., 28 (2020), 263-289.  doi: 10.3934/era.2020016.  Google Scholar

[28]

W. LiuY. Sun and G. Li, On decay and blow-up of solutions for a singular nonlocal viscoelastic problem with a nonlinear source term, Topol. Methods Nonlinear Anal., 49 (2017), 299-323.  doi: 10.12775/tmna.2016.077.  Google Scholar

[29]

W. Liu and J. Yu, A note on blow-up of solution for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 274 (2018), 1276-1283.  doi: 10.1016/j.jfa.2018.01.005.  Google Scholar

[30]

W. LiuB. Zhu and G. Li, Upper and lower bounds for the blow-up time for a viscoelastic wave equation with dynamic boundary conditions, Quaest. Math., 43 (2020), 999-1017.  doi: 10.2989/16073606.2019.1595768.  Google Scholar

[31]

W. Liu and H. Zhuang, Global existence, asymptotic behavior and blow-up of solutions for a suspension bridge equation with nonlinear damping and source terms, NoDEA Nonlinear Differential Equations Appl., 24 (2017), Paper No. 67, 35 pp. doi: 10.1007/s00030-017-0491-5.  Google Scholar

[32]

Y. Liu and R. Xu, Wave equations and reaction-diffusion equations with several nonlinear source terms of different sign, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 171-189.  doi: 10.3934/dcdsb.2007.7.171.  Google Scholar

[33]

Y. Liu and J. Zhao, On potential wells and applications to semilinear hyperbolic equations and parabolic equations, Nonlinear Anal., 64 (2006), 2665-2687.  doi: 10.1016/j.na.2005.09.011.  Google Scholar

[34]

A. Massaccesi and E. Valdinoci, Is a nonlocal diffusion strategy convenient for biological populations in competition?, J. Math. Biol., 74 (2017), 113-147.  doi: 10.1007/s00285-016-1019-z.  Google Scholar

[35]

S. A. MessaoudiB. Said-Houari and N. Tatar, Global existence and asymptotic behavior for a fractional differential equation, Appl. Math. Comput., 188 (2007), 1955-1962.  doi: 10.1016/j.amc.2006.11.105.  Google Scholar

[36]

R. Metzler and J. Klafter, The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A, 37 (2004), R161–R208. doi: 10.1088/0305-4470/37/31/R01.  Google Scholar

[37]

V. Padrón, Effect of aggregation on population revovery modeled by a forward-backward pseudoparabolic equation, Trans. Amer. Math. Soc., 356 (2004), 2739-2756.  doi: 10.1090/S0002-9947-03-03340-3.  Google Scholar

[38]

N. PanP. Pucci and B. Zhang, Degenerate Kirchhoff-type hyperbolic problems involving the fractional Laplacian, J. Evol. Equ., 18 (2018), 385-409.  doi: 10.1007/s00028-017-0406-2.  Google Scholar

[39]

L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273-303.  doi: 10.1007/BF02761595.  Google Scholar

[40]

D. H. Sattinger, On global solution of nonlinear hyperbolic equations, Arch. Rational Mech. Anal., 30 (1968), 148-172.  doi: 10.1007/BF00250942.  Google Scholar

[41]

J.-C. Saut and Y. Wang, Long time behavior of the fractional Korteweg–de Vries equation with cubic nonlinearity, Discrete Contin. Dyn. Syst., 41 (2021), 1133-1155.  doi: 10.3934/dcds.2020312.  Google Scholar

[42]

R. Servadei and E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898.  doi: 10.1016/j.jmaa.2011.12.032.  Google Scholar

[43]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137.  doi: 10.3934/dcds.2013.33.2105.  Google Scholar

[44]

D. W. Sims et al., Scaling laws of marine predator search behavior, Nature, 451 (2008), 1098-1102.  doi: 10.1038/nature06518.  Google Scholar

[45]

D. StanF. del Teso and J. L. Vázquez, Finite and infinite speed of propagation for porous medium equations with nonlocal pressure, J. Differential Equations, 260 (2016), 1154-1199.  doi: 10.1016/j.jde.2015.09.023.  Google Scholar

[46]

E. Valdinoci, From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl. SeMA No., 49 (2009), 33-44.   Google Scholar

[47]

J. L. Vázquez, Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 857-885.  doi: 10.3934/dcdss.2014.7.857.  Google Scholar

[48]

J. L. Vázquez, Asymptotic behaviour for the fractional heat equation in the Euclidean space, Complex Var. Elliptic Equ., 63 (2018), 1216-1231.  doi: 10.1080/17476933.2017.1393807.  Google Scholar

[49]

M. XiangD. Vicentiu and B. Zhang, Nonlocal Kirchhoff diffusion problems: Local existence and blow-up of solutions, Nonlinearity, 31 (2018), 3228-3250.  doi: 10.1088/1361-6544/aaba35.  Google Scholar

[50]

R. Xu and J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), 2732-2763.  doi: 10.1016/j.jfa.2013.03.010.  Google Scholar

[51]

C. ZhangF. Li and J. Duan, Long-time behavior of a class of nonlocal partial differential equations, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 749-763.  doi: 10.3934/dcdsb.2018041.  Google Scholar

[52]

X. Zhang, Stochastic Lagrangian particle approach to fractal Navier-Stokes equations, Comm. Math. Phys., 311 (2012), 133–155. doi: 10.1007/s00220-012-1414-2.  Google Scholar

[53]

W. Zhao and W. Liu, A note on blow-up of solutions for a class of fourth-order wave equation with viscous damping term, Appl. Anal., 97 (2018), 1496-1504.  doi: 10.1080/00036811.2017.1313410.  Google Scholar

show all references

References:
[1]

A. AlsaediB. AhmadM. Kirane and B. T. Torebek, Blowing-up solutions of the time-fractional dispersive equations, Adv. Nonlinear Anal., 10 (2021), 952-971.  doi: 10.1515/anona-2020-0153.  Google Scholar

[2]

D. Applebaum, Lévy processes–-from probability to finance and quantum groups, Notices Amer. Math. Soc., 51 (2004), 1336-1347.   Google Scholar

[3]

D. Applebaum, Lévy Processes and Stochastic Calculus, second edition, Cambridge Studies in Advanced Mathematics, 116, Cambridge University Press, Cambridge, 2009. doi: 10.1017/CBO9780511809781.  Google Scholar

[4]

V. V. Au et al., On a final value problem for a nonlinear fractional pseudo-parabolic equation, Electron. Res. Arch., 29 (2021), 1709-1734.  doi: 10.3934/era.2020088.  Google Scholar

[5]

T. B. BenjaminJ. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Roy. Soc. London Ser. A, 272 (1972), 47-78.  doi: 10.1098/rsta.1972.0032.  Google Scholar

[6]

J. Bertoin, Lévy Processes, Cambridge Tracts in Mathematics, 121, Cambridge University Press, Cambridge, 1996.  Google Scholar

[7] G. M. BisciV. D. Radulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems, Encyclopedia of Mathematics and its Applications, 162, Cambridge University Press, Cambridge, 2016.  doi: 10.1017/CBO9781316282397.  Google Scholar
[8]

C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, Lecture Notes of the Unione Matematica Italiana, 20, Springer, 2016. doi: 10.1007/978-3-319-28739-3.  Google Scholar

[9]

H. ChenP. Luo and G. Liu, Global solution and blow-up of a semilinear heat equation with logarithmic nonlinearity, J. Math. Anal. Appl., 422 (2015), 84-98.  doi: 10.1016/j.jmaa.2014.08.030.  Google Scholar

[10]

H. Chen and S. Tian, Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differential Equations, 258 (2015), 4424-4442.  doi: 10.1016/j.jde.2015.01.038.  Google Scholar

[11]

H. Chen and H. Xu, Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity, Discrete Contin. Dyn. Syst., 39 (2019), 1185-1203.  doi: 10.3934/dcds.2019051.  Google Scholar

[12]

A. Cotsiolis and N. K. Tavoularis, On logarithmic Sobolev inequalities for higher order fractional derivatives, C. R. Math. Acad. Sci. Paris, 340 (2005), 205-208.  doi: 10.1016/j.crma.2004.11.030.  Google Scholar

[13]

A. de PabloF. QuirósA. Rodriguez and J. L. Vázquez, A fractional porous medium equation, Adv. Math., 226 (2011), 1378-1409.  doi: 10.1016/j.aim.2010.07.017.  Google Scholar

[14]

A. de PabloF. QuirósA. Rodriguez and J. L. Vázquez, A general fractional porous medium equation, Comm. Pure Appl. Math., 65 (2012), 1242-1284.  doi: 10.1002/cpa.21408.  Google Scholar

[15]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[16]

H. DiY. Shang and X. Peng, Blow-up phenomena for a pseudo-parabolic equation with variable exponents, Appl. Math. Lett., 64 (2017), 67-73.  doi: 10.1016/j.aml.2016.08.013.  Google Scholar

[17]

H. DiY. Shang and X. Zheng, Global well-posedness for a fourth order pseudo-parabolic equation with memory and source terms, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 781-801.  doi: 10.3934/dcdsb.2016.21.781.  Google Scholar

[18]

S. Dipierro, M. Medina and E. Valdinoci, Fractional Elliptic Problems with Critical Growth in the Whole of $\mathbb{R}^n$, Appunti. Scuola Normale Superiore di Pisa (Nuova Serie), 15, Edizioni della Normale, Pisa, 2017. doi: 10.1007/978-88-7642-601-8.  Google Scholar

[19]

A. A. DubkovB. Spagnolo and V. V. Uchaikin, Lévy flight superdiffusion: An introduction, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18 (2008), 2649-2672.  doi: 10.1142/S0218127408021877.  Google Scholar

[20]

Y. Fu and P. Pucci, On solutions of space-fractional diffusion equations by means of potential wells, Electron. J. Qual. Theory Differ. Equ., 2016 (2016), Paper No. 70, 17 pp. doi: 10.14232/ejqtde.2016.1.70.  Google Scholar

[21]

L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math., 97 (1975), 1061-1083.  doi: 10.2307/2373688.  Google Scholar

[22]

N. E. Humphries et al., Environmental context explains Levy and Brownian movement patterns of marine predators, Nature, 465 (2010), 1066-1069.  doi: 10.1038/nature09116.  Google Scholar

[23]

J. D. Kečkić and P. M. Vasić, Some inequalities for the gamma function, Publ. Inst. Math., (Beograd) (N.S.), 11 (1971), 107–114.  Google Scholar

[24]

M. O. Korpusov and A. G. Sveshnikov, Blow-up of solutions of Sobolev-type nonlinear equations with cubic sources, Differ. Equ., 42 (2006), 431-443.  doi: 10.1134/S001226610603013X.  Google Scholar

[25]

G. Li, J. Yu and W. Liu, Global existence, exponential decay and finite time blow-up of solutions for a class of semilinear pseudo-parabolic equations with conical degeneration, J. Pseudo-Differ. Oper. Appl., 8 (2017), 629–660. doi: 10.1007/s11868-017-0216-x.  Google Scholar

[26]

M. LiaoQ. Liu and H. Ye, Global existence and blow-up of weak solutions for a class of fractional $p$-Laplacian evolution equations, Adv. Nonlinear Anal., 9 (2020), 1569-1591.  doi: 10.1515/anona-2020-0066.  Google Scholar

[27]

G. Liu, The existence, general decay and blow-up for a plate equation with nonlinear damping and a logarithmic source term, Electron. Res. Arch., 28 (2020), 263-289.  doi: 10.3934/era.2020016.  Google Scholar

[28]

W. LiuY. Sun and G. Li, On decay and blow-up of solutions for a singular nonlocal viscoelastic problem with a nonlinear source term, Topol. Methods Nonlinear Anal., 49 (2017), 299-323.  doi: 10.12775/tmna.2016.077.  Google Scholar

[29]

W. Liu and J. Yu, A note on blow-up of solution for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 274 (2018), 1276-1283.  doi: 10.1016/j.jfa.2018.01.005.  Google Scholar

[30]

W. LiuB. Zhu and G. Li, Upper and lower bounds for the blow-up time for a viscoelastic wave equation with dynamic boundary conditions, Quaest. Math., 43 (2020), 999-1017.  doi: 10.2989/16073606.2019.1595768.  Google Scholar

[31]

W. Liu and H. Zhuang, Global existence, asymptotic behavior and blow-up of solutions for a suspension bridge equation with nonlinear damping and source terms, NoDEA Nonlinear Differential Equations Appl., 24 (2017), Paper No. 67, 35 pp. doi: 10.1007/s00030-017-0491-5.  Google Scholar

[32]

Y. Liu and R. Xu, Wave equations and reaction-diffusion equations with several nonlinear source terms of different sign, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 171-189.  doi: 10.3934/dcdsb.2007.7.171.  Google Scholar

[33]

Y. Liu and J. Zhao, On potential wells and applications to semilinear hyperbolic equations and parabolic equations, Nonlinear Anal., 64 (2006), 2665-2687.  doi: 10.1016/j.na.2005.09.011.  Google Scholar

[34]

A. Massaccesi and E. Valdinoci, Is a nonlocal diffusion strategy convenient for biological populations in competition?, J. Math. Biol., 74 (2017), 113-147.  doi: 10.1007/s00285-016-1019-z.  Google Scholar

[35]

S. A. MessaoudiB. Said-Houari and N. Tatar, Global existence and asymptotic behavior for a fractional differential equation, Appl. Math. Comput., 188 (2007), 1955-1962.  doi: 10.1016/j.amc.2006.11.105.  Google Scholar

[36]

R. Metzler and J. Klafter, The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A, 37 (2004), R161–R208. doi: 10.1088/0305-4470/37/31/R01.  Google Scholar

[37]

V. Padrón, Effect of aggregation on population revovery modeled by a forward-backward pseudoparabolic equation, Trans. Amer. Math. Soc., 356 (2004), 2739-2756.  doi: 10.1090/S0002-9947-03-03340-3.  Google Scholar

[38]

N. PanP. Pucci and B. Zhang, Degenerate Kirchhoff-type hyperbolic problems involving the fractional Laplacian, J. Evol. Equ., 18 (2018), 385-409.  doi: 10.1007/s00028-017-0406-2.  Google Scholar

[39]

L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273-303.  doi: 10.1007/BF02761595.  Google Scholar

[40]

D. H. Sattinger, On global solution of nonlinear hyperbolic equations, Arch. Rational Mech. Anal., 30 (1968), 148-172.  doi: 10.1007/BF00250942.  Google Scholar

[41]

J.-C. Saut and Y. Wang, Long time behavior of the fractional Korteweg–de Vries equation with cubic nonlinearity, Discrete Contin. Dyn. Syst., 41 (2021), 1133-1155.  doi: 10.3934/dcds.2020312.  Google Scholar

[42]

R. Servadei and E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898.  doi: 10.1016/j.jmaa.2011.12.032.  Google Scholar

[43]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137.  doi: 10.3934/dcds.2013.33.2105.  Google Scholar

[44]

D. W. Sims et al., Scaling laws of marine predator search behavior, Nature, 451 (2008), 1098-1102.  doi: 10.1038/nature06518.  Google Scholar

[45]

D. StanF. del Teso and J. L. Vázquez, Finite and infinite speed of propagation for porous medium equations with nonlocal pressure, J. Differential Equations, 260 (2016), 1154-1199.  doi: 10.1016/j.jde.2015.09.023.  Google Scholar

[46]

E. Valdinoci, From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl. SeMA No., 49 (2009), 33-44.   Google Scholar

[47]

J. L. Vázquez, Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 857-885.  doi: 10.3934/dcdss.2014.7.857.  Google Scholar

[48]

J. L. Vázquez, Asymptotic behaviour for the fractional heat equation in the Euclidean space, Complex Var. Elliptic Equ., 63 (2018), 1216-1231.  doi: 10.1080/17476933.2017.1393807.  Google Scholar

[49]

M. XiangD. Vicentiu and B. Zhang, Nonlocal Kirchhoff diffusion problems: Local existence and blow-up of solutions, Nonlinearity, 31 (2018), 3228-3250.  doi: 10.1088/1361-6544/aaba35.  Google Scholar

[50]

R. Xu and J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), 2732-2763.  doi: 10.1016/j.jfa.2013.03.010.  Google Scholar

[51]

C. ZhangF. Li and J. Duan, Long-time behavior of a class of nonlocal partial differential equations, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 749-763.  doi: 10.3934/dcdsb.2018041.  Google Scholar

[52]

X. Zhang, Stochastic Lagrangian particle approach to fractal Navier-Stokes equations, Comm. Math. Phys., 311 (2012), 133–155. doi: 10.1007/s00220-012-1414-2.  Google Scholar

[53]

W. Zhao and W. Liu, A note on blow-up of solutions for a class of fourth-order wave equation with viscous damping term, Appl. Anal., 97 (2018), 1496-1504.  doi: 10.1080/00036811.2017.1313410.  Google Scholar

Figure 1.  $ J(\lambda u) $ curve about $ \lambda $
Figure 2.  Space partition diagram with $ \gamma(\delta) $ and $ I_{\delta}(u) $
Figure 3.  $ d(\delta) $ curve about $ \delta $
Figure 4.  Space partition diagram with $ \sqrt{\frac{d(\delta)}{a(\delta)}} $ and $ I_{\delta}(u) $
Figure 5.  Vacuum region $ U_{e} $
[1]

Hua Chen, Huiyang Xu. Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity. Discrete & Continuous Dynamical Systems, 2019, 39 (2) : 1185-1203. doi: 10.3934/dcds.2019051

[2]

Monica Marras, Stella Vernier-Piro, Giuseppe Viglialoro. Blow-up phenomena for nonlinear pseudo-parabolic equations with gradient term. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2291-2300. doi: 10.3934/dcdsb.2017096

[3]

Xiaoli Zhu, Fuyi Li, Ting Rong. Global existence and blow up of solutions to a class of pseudo-parabolic equations with an exponential source. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2465-2485. doi: 10.3934/cpaa.2015.14.2465

[4]

Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020109

[5]

Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (2) : 583-621. doi: 10.3934/cpaa.2020282

[6]

Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete & Continuous Dynamical Systems, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399

[7]

Xiumei Deng, Jun Zhou. Global existence and blow-up of solutions to a semilinear heat equation with singular potential and logarithmic nonlinearity. Communications on Pure & Applied Analysis, 2020, 19 (2) : 923-939. doi: 10.3934/cpaa.2020042

[8]

Gongwei Liu. The existence, general decay and blow-up for a plate equation with nonlinear damping and a logarithmic source term. Electronic Research Archive, 2020, 28 (1) : 263-289. doi: 10.3934/era.2020016

[9]

Tran Ngoc Thach, Devendra Kumar, Nguyen Hoang Luc, Nguyen Huy Tuan. Existence and regularity results for stochastic fractional pseudo-parabolic equations driven by white noise. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021118

[10]

Yoshikazu Giga. Interior derivative blow-up for quasilinear parabolic equations. Discrete & Continuous Dynamical Systems, 1995, 1 (3) : 449-461. doi: 10.3934/dcds.1995.1.449

[11]

Li Ma. Blow-up for semilinear parabolic equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1103-1110. doi: 10.3934/cpaa.2013.12.1103

[12]

Huyuan Chen, Hichem Hajaiej, Ying Wang. Boundary blow-up solutions to fractional elliptic equations in a measure framework. Discrete & Continuous Dynamical Systems, 2016, 36 (4) : 1881-1903. doi: 10.3934/dcds.2016.36.1881

[13]

Xiaoliang Li, Baiyu Liu. Finite time blow-up and global solutions for a nonlocal parabolic equation with Hartree type nonlinearity. Communications on Pure & Applied Analysis, 2020, 19 (6) : 3093-3112. doi: 10.3934/cpaa.2020134

[14]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[15]

Yitian Wang, Xiaoping Liu, Yuxuan Chen. Semilinear pseudo-parabolic equations on manifolds with conical singularities. Electronic Research Archive, 2021, 29 (6) : 3687-3720. doi: 10.3934/era.2021057

[16]

Asato Mukai, Yukihiro Seki. Refined construction of type II blow-up solutions for semilinear heat equations with Joseph–Lundgren supercritical nonlinearity. Discrete & Continuous Dynamical Systems, 2021, 41 (10) : 4847-4885. doi: 10.3934/dcds.2021060

[17]

Nguyen Thanh Long, Hoang Hai Ha, Le Thi Phuong Ngoc, Nguyen Anh Triet. Existence, blow-up and exponential decay estimates for a system of nonlinear viscoelastic wave equations with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2020, 19 (1) : 455-492. doi: 10.3934/cpaa.2020023

[18]

Mingyou Zhang, Qingsong Zhao, Yu Liu, Wenke Li. Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition. Electronic Research Archive, 2020, 28 (1) : 369-381. doi: 10.3934/era.2020021

[19]

Hua Chen, Nian Liu. Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials. Discrete & Continuous Dynamical Systems, 2016, 36 (2) : 661-682. doi: 10.3934/dcds.2016.36.661

[20]

Mingqi Xiang, Die Hu. Existence and blow-up of solutions for fractional wave equations of Kirchhoff type with viscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (12) : 4609-4629. doi: 10.3934/dcdss.2021125

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (66)
  • HTML views (63)
  • Cited by (0)

Other articles
by authors

[Back to Top]