In this paper, we study the fractional pseudo-parabolic equations $ u_{t} + \left(-\Delta\right)^{s} u + \left(-\Delta\right)^{s} u_{t} = u\log \left| u \right| $. Firstly, we recall the relationship between the fractional Laplace operator $ \left(-\Delta\right)^{s} $ and the fractional Sobolev space $ H^{s} $ and discuss the invariant sets and the vacuum isolating behavior of solutions with the help of a family of potential wells. Then, we derive a threshold result of existence of weak solution: for the low initial energy case (i.e., $ J(u_{0}) < d $), the solution is global in time with $ I(u_{0}) > 0 $ or $ \Vert u_{0}\Vert_{{X_{0}(\Omega)}} = 0 $ and blows up at $ +\infty $ with $ I(u_{0}) < 0 $; for the critical initial energy case (i.e., $ J(u_{0}) = d $), the solution is global in time with $ I(u_{0}) \geq0 $ and blows up at $ +\infty $ with $ I(u_{0}) < 0 $. The decay estimate of the energy functional for the global solution is also given.
Citation: |
[1] |
A. Alsaedi, B. Ahmad, M. Kirane and B. T. Torebek, Blowing-up solutions of the time-fractional dispersive equations, Adv. Nonlinear Anal., 10 (2021), 952-971.
doi: 10.1515/anona-2020-0153.![]() ![]() ![]() |
[2] |
D. Applebaum, Lévy processes–-from probability to finance and quantum groups, Notices Amer. Math. Soc., 51 (2004), 1336-1347.
![]() ![]() |
[3] |
D. Applebaum, Lévy Processes and Stochastic Calculus, second edition, Cambridge Studies in Advanced Mathematics, 116, Cambridge University Press, Cambridge, 2009.
doi: 10.1017/CBO9780511809781.![]() ![]() ![]() |
[4] |
V. V. Au et al., On a final value problem for a nonlinear fractional pseudo-parabolic equation, Electron. Res. Arch., 29 (2021), 1709-1734.
doi: 10.3934/era.2020088.![]() ![]() ![]() |
[5] |
T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Roy. Soc. London Ser. A, 272 (1972), 47-78.
doi: 10.1098/rsta.1972.0032.![]() ![]() ![]() |
[6] |
J. Bertoin, Lévy Processes, Cambridge Tracts in Mathematics, 121, Cambridge University Press, Cambridge, 1996.
![]() ![]() |
[7] |
G. M. Bisci, V. D. Radulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems, Encyclopedia of Mathematics and its Applications, 162, Cambridge University Press, Cambridge, 2016.
doi: 10.1017/CBO9781316282397.![]() ![]() ![]() |
[8] |
C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, Lecture Notes of the Unione Matematica Italiana, 20, Springer, 2016.
doi: 10.1007/978-3-319-28739-3.![]() ![]() ![]() |
[9] |
H. Chen, P. Luo and G. Liu, Global solution and blow-up of a semilinear heat equation with logarithmic nonlinearity, J. Math. Anal. Appl., 422 (2015), 84-98.
doi: 10.1016/j.jmaa.2014.08.030.![]() ![]() ![]() |
[10] |
H. Chen and S. Tian, Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differential Equations, 258 (2015), 4424-4442.
doi: 10.1016/j.jde.2015.01.038.![]() ![]() ![]() |
[11] |
H. Chen and H. Xu, Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity, Discrete Contin. Dyn. Syst., 39 (2019), 1185-1203.
doi: 10.3934/dcds.2019051.![]() ![]() ![]() |
[12] |
A. Cotsiolis and N. K. Tavoularis, On logarithmic Sobolev inequalities for higher order fractional derivatives, C. R. Math. Acad. Sci. Paris, 340 (2005), 205-208.
doi: 10.1016/j.crma.2004.11.030.![]() ![]() ![]() |
[13] |
A. de Pablo, F. Quirós, A. Rodriguez and J. L. Vázquez, A fractional porous medium equation, Adv. Math., 226 (2011), 1378-1409.
doi: 10.1016/j.aim.2010.07.017.![]() ![]() ![]() |
[14] |
A. de Pablo, F. Quirós, A. Rodriguez and J. L. Vázquez, A general fractional porous medium equation, Comm. Pure Appl. Math., 65 (2012), 1242-1284.
doi: 10.1002/cpa.21408.![]() ![]() ![]() |
[15] |
E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004.![]() ![]() ![]() |
[16] |
H. Di, Y. Shang and X. Peng, Blow-up phenomena for a pseudo-parabolic equation with variable exponents, Appl. Math. Lett., 64 (2017), 67-73.
doi: 10.1016/j.aml.2016.08.013.![]() ![]() ![]() |
[17] |
H. Di, Y. Shang and X. Zheng, Global well-posedness for a fourth order pseudo-parabolic equation with memory and source terms, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 781-801.
doi: 10.3934/dcdsb.2016.21.781.![]() ![]() ![]() |
[18] |
S. Dipierro, M. Medina and E. Valdinoci, Fractional Elliptic Problems with Critical Growth in the Whole of $\mathbb{R}^n$, Appunti. Scuola Normale Superiore di Pisa (Nuova Serie), 15, Edizioni della Normale, Pisa, 2017.
doi: 10.1007/978-88-7642-601-8.![]() ![]() ![]() |
[19] |
A. A. Dubkov, B. Spagnolo and V. V. Uchaikin, Lévy flight superdiffusion: An introduction, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18 (2008), 2649-2672.
doi: 10.1142/S0218127408021877.![]() ![]() ![]() |
[20] |
Y. Fu and P. Pucci, On solutions of space-fractional diffusion equations by means of potential wells, Electron. J. Qual. Theory Differ. Equ., 2016 (2016), Paper No. 70, 17 pp.
doi: 10.14232/ejqtde.2016.1.70.![]() ![]() ![]() |
[21] |
L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math., 97 (1975), 1061-1083.
doi: 10.2307/2373688.![]() ![]() ![]() |
[22] |
N. E. Humphries et al., Environmental context explains Levy and Brownian movement patterns of marine predators, Nature, 465 (2010), 1066-1069.
doi: 10.1038/nature09116.![]() ![]() |
[23] |
J. D. Kečkić and P. M. Vasić, Some inequalities for the gamma function, Publ. Inst. Math., (Beograd) (N.S.), 11 (1971), 107–114.
![]() ![]() |
[24] |
M. O. Korpusov and A. G. Sveshnikov, Blow-up of solutions of Sobolev-type nonlinear equations with cubic sources, Differ. Equ., 42 (2006), 431-443.
doi: 10.1134/S001226610603013X.![]() ![]() ![]() |
[25] |
G. Li, J. Yu and W. Liu, Global existence, exponential decay and finite time blow-up of solutions for a class of semilinear pseudo-parabolic equations with conical degeneration, J. Pseudo-Differ. Oper. Appl., 8 (2017), 629–660.
doi: 10.1007/s11868-017-0216-x.![]() ![]() ![]() |
[26] |
M. Liao, Q. Liu and H. Ye, Global existence and blow-up of weak solutions for a class of fractional $p$-Laplacian evolution equations, Adv. Nonlinear Anal., 9 (2020), 1569-1591.
doi: 10.1515/anona-2020-0066.![]() ![]() ![]() |
[27] |
G. Liu, The existence, general decay and blow-up for a plate equation with nonlinear damping and a logarithmic source term, Electron. Res. Arch., 28 (2020), 263-289.
doi: 10.3934/era.2020016.![]() ![]() ![]() |
[28] |
W. Liu, Y. Sun and G. Li, On decay and blow-up of solutions for a singular nonlocal viscoelastic problem with a nonlinear source term, Topol. Methods Nonlinear Anal., 49 (2017), 299-323.
doi: 10.12775/tmna.2016.077.![]() ![]() ![]() |
[29] |
W. Liu and J. Yu, A note on blow-up of solution for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 274 (2018), 1276-1283.
doi: 10.1016/j.jfa.2018.01.005.![]() ![]() ![]() |
[30] |
W. Liu, B. Zhu and G. Li, Upper and lower bounds for the blow-up time for a viscoelastic wave equation with dynamic boundary conditions, Quaest. Math., 43 (2020), 999-1017.
doi: 10.2989/16073606.2019.1595768.![]() ![]() ![]() |
[31] |
W. Liu and H. Zhuang, Global existence, asymptotic behavior and blow-up of solutions for a suspension bridge equation with nonlinear damping and source terms, NoDEA Nonlinear Differential Equations Appl., 24 (2017), Paper No. 67, 35 pp.
doi: 10.1007/s00030-017-0491-5.![]() ![]() ![]() |
[32] |
Y. Liu and R. Xu, Wave equations and reaction-diffusion equations with several nonlinear source terms of different sign, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 171-189.
doi: 10.3934/dcdsb.2007.7.171.![]() ![]() ![]() |
[33] |
Y. Liu and J. Zhao, On potential wells and applications to semilinear hyperbolic equations and parabolic equations, Nonlinear Anal., 64 (2006), 2665-2687.
doi: 10.1016/j.na.2005.09.011.![]() ![]() ![]() |
[34] |
A. Massaccesi and E. Valdinoci, Is a nonlocal diffusion strategy convenient for biological populations in competition?, J. Math. Biol., 74 (2017), 113-147.
doi: 10.1007/s00285-016-1019-z.![]() ![]() ![]() |
[35] |
S. A. Messaoudi, B. Said-Houari and N. Tatar, Global existence and asymptotic behavior for a fractional differential equation, Appl. Math. Comput., 188 (2007), 1955-1962.
doi: 10.1016/j.amc.2006.11.105.![]() ![]() ![]() |
[36] |
R. Metzler and J. Klafter, The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A, 37 (2004), R161–R208.
doi: 10.1088/0305-4470/37/31/R01.![]() ![]() ![]() |
[37] |
V. Padrón, Effect of aggregation on population revovery modeled by a forward-backward pseudoparabolic equation, Trans. Amer. Math. Soc., 356 (2004), 2739-2756.
doi: 10.1090/S0002-9947-03-03340-3.![]() ![]() ![]() |
[38] |
N. Pan, P. Pucci and B. Zhang, Degenerate Kirchhoff-type hyperbolic problems involving the fractional Laplacian, J. Evol. Equ., 18 (2018), 385-409.
doi: 10.1007/s00028-017-0406-2.![]() ![]() ![]() |
[39] |
L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273-303.
doi: 10.1007/BF02761595.![]() ![]() ![]() |
[40] |
D. H. Sattinger, On global solution of nonlinear hyperbolic equations, Arch. Rational Mech. Anal., 30 (1968), 148-172.
doi: 10.1007/BF00250942.![]() ![]() ![]() |
[41] |
J.-C. Saut and Y. Wang, Long time behavior of the fractional Korteweg–de Vries equation with cubic nonlinearity, Discrete Contin. Dyn. Syst., 41 (2021), 1133-1155.
doi: 10.3934/dcds.2020312.![]() ![]() ![]() |
[42] |
R. Servadei and E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898.
doi: 10.1016/j.jmaa.2011.12.032.![]() ![]() ![]() |
[43] |
R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137.
doi: 10.3934/dcds.2013.33.2105.![]() ![]() ![]() |
[44] |
D. W. Sims et al., Scaling laws of marine predator search behavior, Nature, 451 (2008), 1098-1102.
doi: 10.1038/nature06518.![]() ![]() |
[45] |
D. Stan, F. del Teso and J. L. Vázquez, Finite and infinite speed of propagation for porous medium equations with nonlocal pressure, J. Differential Equations, 260 (2016), 1154-1199.
doi: 10.1016/j.jde.2015.09.023.![]() ![]() ![]() |
[46] |
E. Valdinoci, From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl. SeMA No., 49 (2009), 33-44.
![]() ![]() |
[47] |
J. L. Vázquez, Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 857-885.
doi: 10.3934/dcdss.2014.7.857.![]() ![]() ![]() |
[48] |
J. L. Vázquez, Asymptotic behaviour for the fractional heat equation in the Euclidean space, Complex Var. Elliptic Equ., 63 (2018), 1216-1231.
doi: 10.1080/17476933.2017.1393807.![]() ![]() ![]() |
[49] |
M. Xiang, D. Vicentiu and B. Zhang, Nonlocal Kirchhoff diffusion problems: Local existence and blow-up of solutions, Nonlinearity, 31 (2018), 3228-3250.
doi: 10.1088/1361-6544/aaba35.![]() ![]() ![]() |
[50] |
R. Xu and J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), 2732-2763.
doi: 10.1016/j.jfa.2013.03.010.![]() ![]() ![]() |
[51] |
C. Zhang, F. Li and J. Duan, Long-time behavior of a class of nonlocal partial differential equations, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 749-763.
doi: 10.3934/dcdsb.2018041.![]() ![]() ![]() |
[52] |
X. Zhang, Stochastic Lagrangian particle approach to fractal Navier-Stokes equations, Comm. Math. Phys., 311 (2012), 133–155.
doi: 10.1007/s00220-012-1414-2.![]() ![]() ![]() |
[53] |
W. Zhao and W. Liu, A note on blow-up of solutions for a class of fourth-order wave equation with viscous damping term, Appl. Anal., 97 (2018), 1496-1504.
doi: 10.1080/00036811.2017.1313410.![]() ![]() ![]() |