-
Previous Article
Global existence and blowup in infinite time for a fourth order wave equation with damping and logarithmic strain terms
- DCDS-S Home
- This Issue
-
Next Article
Inviscid limit for the damped generalized incompressible Navier-Stokes equations on $ \mathbb{T}^2 $
Orbital stability of periodic peakons for the generalized modified Camassa-Holm equation
Department of Mathematics, Research Institute of Basic Science, Incheon National University, Incheon 22012, Republic of Korea |
This paper is devoted to studying the dynamical stability of periodic peaked solitary waves for the generalized modified Camassa-Holm equation. The equation is a generalization of the modified Camassa-Holm equation and it possesses the Hamiltonian structure shared by the modified Camassa-Holm equation. The equation admits the periodic peakons. It is shown that the periodic peakons are dynamically stable under small perturbations in the energy space.
References:
[1] |
S. C. Anco and E. Recio,
A general family of multi-peakon equations and their properties, J. Phys. A: Math. Theor., 52 (2019), 125203.
doi: 10.1088/1751-8121/ab03dd. |
[2] |
R. Camassa and D. D. Holm,
An integrable shallow water equation with peaked soliton, Phys. Rev. Lett., 71 (1993), 1661-1664.
doi: 10.1103/PhysRevLett.71.1661. |
[3] |
R. Camassa, D. D. Holm and J. M. Hyman,
A new integral shallow water equation, Adv. Appl. Mech., 31 (1994), 1-33.
doi: 10.1016/S0065-2156(08)70254-0. |
[4] |
A. Chen and X. Lu,
Orbital stability of elliptic periodic peakons for the modified Camassa-Holm equation, Discrete Contin. Dyn. Syst. Ser. S, 40 (2020), 1703-1735.
doi: 10.3934/dcds.2020090. |
[5] |
R. Chen, S. Pan and B. Zhang,
Global conservative solutions for a modified periodic coupled Camassa-Holm system, Electron. Res. Arch., 29 (2021), 1691-1708.
doi: 10.3934/era.2020087. |
[6] |
A. Constantin,
Particle trajectories in extreme Stokes waves, IMA J. Appl. Math., 77 (2012), 293-307.
doi: 10.1093/imamat/hxs033. |
[7] |
A. Constantin,
Existence of permanent and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier (Grenoble), 50 (2000), 321-362.
doi: 10.5802/aif.1757. |
[8] |
A. Constantin,
The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.
doi: 10.1007/s00222-006-0002-5. |
[9] |
A. Constantin and J. Escher,
Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 26 (1998), 303-328.
|
[10] |
A. Constantin and J. Escher,
Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.
doi: 10.1007/BF02392586. |
[11] |
A. Constantin and J. Escher,
Particle trajectories in solitary water waves, Bull. Amer. Math. Soc., 44 (2007), 423-431.
doi: 10.1090/S0273-0979-07-01159-7. |
[12] |
A. Constantin and B. Kolev,
On the geometric approach to the motion of inertial mechanical systems, J. Phys. A, 35 (2002), R51-R79.
doi: 10.1088/0305-4470/35/32/201. |
[13] |
A. Constantin and B. Kolev,
Geodesic flow on the diffeomorphism group of the circle, Comment. Math. Helv., 78 (2003), 787-804.
doi: 10.1007/s00014-003-0785-6. |
[14] |
A. Constantin and D. Lannes,
The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal., 192 (2009), 165-186.
doi: 10.1007/s00205-008-0128-2. |
[15] |
A. Constantin and L. Molinet,
Orbital stability of solitary waves for a shallow water equation, Phys. D, 157 (2001), 75-89.
doi: 10.1016/S0167-2789(01)00298-6. |
[16] |
A. Constantin and W. A. Strauss,
Stability of peakons, Commun. Pure Appl. Math., 53 (2000), 603-610.
doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L. |
[17] |
H.-H. Dai,
Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod, Acta Mech., 127 (1998), 193-207.
doi: 10.1007/BF01170373. |
[18] |
H. R. Dullin, G. A. Gottwald and D. D. Holm,
Camassa-Holm, Korteweg-de Vries-5 and other asymptotically equivalent equations for shallow water waves, Fluid Dyn. Res., 33 (2003), 73-95.
doi: 10.1016/S0169-5983(03)00046-7. |
[19] |
H. R. Dullin, G. A. Gottwald and D. D. Holm,
On asymptotically equivalent shallow water wave equations, Phys. D, 190 (2004), 1-14.
doi: 10.1016/j.physd.2003.11.004. |
[20] |
K. El Dika and L. Molinet,
Stability of multipeakons, Ann. Inst. H. Poincaŕe Anal. NonLin., 26 (2009), 1517-1532.
doi: 10.1016/j.anihpc.2009.02.002. |
[21] |
A. S. Fokas,
On a class of physically important integrable equations, Phys. D, 87 (1995), 145-150.
doi: 10.1016/0167-2789(95)00133-O. |
[22] |
A. S. Fokas,
The Korteweg-de Vries equation and beyond, Acta Appl. Math., 39 (1995), 295-305.
doi: 10.1007/BF00994638. |
[23] |
A. S. Fokas and B. Fuchssteiner,
On the structure of symplectic operators and hereditary symmetries, Lett. Nuovo Cimento, 28 (1980), 299-303.
doi: 10.1007/BF02798794. |
[24] |
B. Fuchssteiner,
Some tricks from the symmetry-toolbox for nonlinear equations: Generalizations of the Camassa-Holm equation, Phys. D, 95 (1996), 229-243.
doi: 10.1016/0167-2789(96)00048-6. |
[25] |
G. Gui, Y. Liu, P. J. Olver and C. Qu,
Wave-breaking and peakons for a modified Camassa-Holm equation, Commun. Math. Phys., 319 (2013), 731-759.
doi: 10.1007/s00220-012-1566-0. |
[26] |
Z. Guo, X. Liu, X. Liu and C. Qu,
Stability of peakons for the generalized modified Camassa-Holm equation, J. Differential Equations, 266 (2019), 7749-7779.
doi: 10.1016/j.jde.2018.12.014. |
[27] |
C. He and C. Qu,
Global weak solutions for the two-component Novikov equation, Electron. Res. Arch., 28 (2020), 1545-1562.
doi: 10.3934/era.2020081. |
[28] |
A. A. Himonas and C. Holliman,
The Cauchy problem for the Novikov equation, Nonlinearity, 25 (2012), 449-479.
doi: 10.1088/0951-7715/25/2/449. |
[29] |
D. Holm and R. Ivanov,
Smooth and peaked solitons of the Camassa-Holm equation and applications, J. Geom. Symm. Phys., 22 (2011), 13-49.
doi: 10.7546/jgsp-22-2011-13-49. |
[30] |
D. D. Holm, J. E. Marsden and T. S. Ratiu,
The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. Math., 137 (1998), 1-81.
doi: 10.1006/aima.1998.1721. |
[31] |
A. N. W. Hone and J. P. Wang,
Integrable peakon equations with cubic nonlinearity, J. Phys. A: Math. Theor., 41 (2008), 372002.
doi: 10.1088/1751-8113/41/37/372002. |
[32] |
R. S. Johnson,
Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid Mech., 455 (2002), 63-82.
doi: 10.1017/S0022112001007224. |
[33] |
R. S. Johnson,
On solutions of the Camassa-Holm equation, Proc. R. Soc. Lond. A, 459 (2003), 1687-1708.
doi: 10.1098/rspa.2002.1078. |
[34] |
R. S. Johnson,
The Camassa-Holm equation for water waves moving over a shear flow, Fluid Dyn. Res., 33 (2003), 97-111.
doi: 10.1016/S0169-5983(03)00036-4. |
[35] |
J. Lenells,
Stability of periodic peakons, Int. Math. Res. Not., 2004 (2004), 485-499.
doi: 10.1155/S1073792804132431. |
[36] |
J. Lenells,
A variational approach to the stability of periodic peakons, J. Nonlin. Math. Phys., 11 (2004), 151-163.
doi: 10.2991/jnmp.2004.11.2.2. |
[37] |
J. Lenells, G. Misiolek and F. Tiǧlay,
Integrable evolution equations on spaces of tensor densities and their peakon solutions, Commun. Math. Phys., 299 (2010), 129-161.
doi: 10.1007/s00220-010-1069-9. |
[38] |
Y. A. Li and P. J. Olver,
Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differential Equations, 162 (2000), 27-63.
doi: 10.1006/jdeq.1999.3683. |
[39] |
X. Liu,
Orbital stability of peakons for a modified Camassa-Holm equation with higher-order nonlinearity, Discrete Contin. Dyn. Syst. A, 38 (2018), 5505-5521.
doi: 10.3934/dcds.2018242. |
[40] |
X. Liu, Y. Liu and C. Qu,
Orbital stability of train of peakons for an integrable modified Camassa-Holm equation, Adv. Math., 255 (2014), 1-37.
doi: 10.1016/j.aim.2013.12.032. |
[41] |
X. Liu, Y. Liu and C. Qu,
Stability of peakons for the Novikov equation, J. Math. Pures Appl., 101 (2014), 172-187.
doi: 10.1016/j.matpur.2013.05.007. |
[42] |
Y. Liu, C. Qu and Y. Zhang,
Stability of peridic peakons for the modified $\mu$-Camassa-Holm equation, Phys. D, 250 (2013), 66-74.
doi: 10.1016/j.physd.2013.02.001. |
[43] |
Y. Matsuno,
The peakon limit of the N-soliton solution of the Camassa-Holm equation, J. Phys. Soc. Jpn., 76 (2007), 034003.
doi: 10.1143/JPSJ.76.034003. |
[44] |
G. Misiolek,
A shallow water equation as a geodesic flow on the Bott-Birasoro group, J. Geom. Phys., 24 (1998), 203-208.
doi: 10.1016/S0393-0440(97)00010-7. |
[45] |
B. Moon,
Single peaked traveling wave solutions to a generalized $\mu$-Novikov equation, Adv. Nonlinear Anal., 10 (2021), 66-75.
doi: 10.1515/anona-2020-0106. |
[46] |
V. Novikov,
Generalizations of the Camassa-Holm equation, J. Phys. A: Math. Theor., 42 (2009), 342002.
doi: 10.1088/1751-8113/42/34/342002. |
[47] |
P. J. Olver and P. Rosenau,
Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E, 53 (1996), 1900-1906.
doi: 10.1103/PhysRevE.53.1900. |
[48] |
P. Popivanov and A. Slavova,
Nonlinear Waves: An Introduction, World Scientific, Hackensack, (2011).
doi: 10.1142/7867. |
[49] |
Z. Qiao,
A new integrable equation with cuspons and W/M-shape-peaks solitons, J. Math. Phys., 47 (2006), 112701.
doi: 10.1063/1.2365758. |
[50] |
Z. Qiao and X. Li,
An integrable equation with nonsmooth solitons, Theor. Math. Phys., 167 (2011), 584-589.
doi: 10.1007/s11232-011-0044-8. |
[51] |
C. Qu, Y. Fu and Y. Liu,
Well-posedness, wave breaking and peakons for a modified $\mu$-Camassa-Holm equation, J. Funct. Anal., 266 (2014), 433-477.
doi: 10.1016/j.jfa.2013.09.021. |
[52] |
C. Qu, X. Liu and Y. Liu,
Stability of peakons for an integrable modified Camassa-Holm equation with cubic nonlinearity, Commun. Math. Phys., 322 (2013), 967-997.
doi: 10.1007/s00220-013-1749-3. |
[53] |
J. F. Toland,
Stokes waves, Topol. Methods Nonlinear Anal., 7 (1996), 1-48.
doi: 10.12775/TMNA.1996.001. |
[54] |
X. Wu and Z. Yin,
Global weak solutions for the Novikov equation, J. Phys. A: Math. Theor., 44 (2011), 055202.
doi: 10.1088/1751-8113/44/5/055202. |
[55] |
R. Xu and Y. Yang,
Low regularity of solutions to the Rotation-Camassa-Holm type equation with the Coriolis effect, Disctete Contin. Dyn. Syst., 40 (2020), 6507-6527.
doi: 10.3934/dcds.2020288. |
[56] |
M. Yang, Y. Li and Y. Zhao,
On the Cauchy problem of generalized Fokas-Olver-Resenau-Qiao equation, Appl. Anal., 97 (2018), 2246-2268.
doi: 10.1080/00036811.2017.1359565. |
show all references
References:
[1] |
S. C. Anco and E. Recio,
A general family of multi-peakon equations and their properties, J. Phys. A: Math. Theor., 52 (2019), 125203.
doi: 10.1088/1751-8121/ab03dd. |
[2] |
R. Camassa and D. D. Holm,
An integrable shallow water equation with peaked soliton, Phys. Rev. Lett., 71 (1993), 1661-1664.
doi: 10.1103/PhysRevLett.71.1661. |
[3] |
R. Camassa, D. D. Holm and J. M. Hyman,
A new integral shallow water equation, Adv. Appl. Mech., 31 (1994), 1-33.
doi: 10.1016/S0065-2156(08)70254-0. |
[4] |
A. Chen and X. Lu,
Orbital stability of elliptic periodic peakons for the modified Camassa-Holm equation, Discrete Contin. Dyn. Syst. Ser. S, 40 (2020), 1703-1735.
doi: 10.3934/dcds.2020090. |
[5] |
R. Chen, S. Pan and B. Zhang,
Global conservative solutions for a modified periodic coupled Camassa-Holm system, Electron. Res. Arch., 29 (2021), 1691-1708.
doi: 10.3934/era.2020087. |
[6] |
A. Constantin,
Particle trajectories in extreme Stokes waves, IMA J. Appl. Math., 77 (2012), 293-307.
doi: 10.1093/imamat/hxs033. |
[7] |
A. Constantin,
Existence of permanent and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier (Grenoble), 50 (2000), 321-362.
doi: 10.5802/aif.1757. |
[8] |
A. Constantin,
The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.
doi: 10.1007/s00222-006-0002-5. |
[9] |
A. Constantin and J. Escher,
Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 26 (1998), 303-328.
|
[10] |
A. Constantin and J. Escher,
Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.
doi: 10.1007/BF02392586. |
[11] |
A. Constantin and J. Escher,
Particle trajectories in solitary water waves, Bull. Amer. Math. Soc., 44 (2007), 423-431.
doi: 10.1090/S0273-0979-07-01159-7. |
[12] |
A. Constantin and B. Kolev,
On the geometric approach to the motion of inertial mechanical systems, J. Phys. A, 35 (2002), R51-R79.
doi: 10.1088/0305-4470/35/32/201. |
[13] |
A. Constantin and B. Kolev,
Geodesic flow on the diffeomorphism group of the circle, Comment. Math. Helv., 78 (2003), 787-804.
doi: 10.1007/s00014-003-0785-6. |
[14] |
A. Constantin and D. Lannes,
The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal., 192 (2009), 165-186.
doi: 10.1007/s00205-008-0128-2. |
[15] |
A. Constantin and L. Molinet,
Orbital stability of solitary waves for a shallow water equation, Phys. D, 157 (2001), 75-89.
doi: 10.1016/S0167-2789(01)00298-6. |
[16] |
A. Constantin and W. A. Strauss,
Stability of peakons, Commun. Pure Appl. Math., 53 (2000), 603-610.
doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L. |
[17] |
H.-H. Dai,
Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod, Acta Mech., 127 (1998), 193-207.
doi: 10.1007/BF01170373. |
[18] |
H. R. Dullin, G. A. Gottwald and D. D. Holm,
Camassa-Holm, Korteweg-de Vries-5 and other asymptotically equivalent equations for shallow water waves, Fluid Dyn. Res., 33 (2003), 73-95.
doi: 10.1016/S0169-5983(03)00046-7. |
[19] |
H. R. Dullin, G. A. Gottwald and D. D. Holm,
On asymptotically equivalent shallow water wave equations, Phys. D, 190 (2004), 1-14.
doi: 10.1016/j.physd.2003.11.004. |
[20] |
K. El Dika and L. Molinet,
Stability of multipeakons, Ann. Inst. H. Poincaŕe Anal. NonLin., 26 (2009), 1517-1532.
doi: 10.1016/j.anihpc.2009.02.002. |
[21] |
A. S. Fokas,
On a class of physically important integrable equations, Phys. D, 87 (1995), 145-150.
doi: 10.1016/0167-2789(95)00133-O. |
[22] |
A. S. Fokas,
The Korteweg-de Vries equation and beyond, Acta Appl. Math., 39 (1995), 295-305.
doi: 10.1007/BF00994638. |
[23] |
A. S. Fokas and B. Fuchssteiner,
On the structure of symplectic operators and hereditary symmetries, Lett. Nuovo Cimento, 28 (1980), 299-303.
doi: 10.1007/BF02798794. |
[24] |
B. Fuchssteiner,
Some tricks from the symmetry-toolbox for nonlinear equations: Generalizations of the Camassa-Holm equation, Phys. D, 95 (1996), 229-243.
doi: 10.1016/0167-2789(96)00048-6. |
[25] |
G. Gui, Y. Liu, P. J. Olver and C. Qu,
Wave-breaking and peakons for a modified Camassa-Holm equation, Commun. Math. Phys., 319 (2013), 731-759.
doi: 10.1007/s00220-012-1566-0. |
[26] |
Z. Guo, X. Liu, X. Liu and C. Qu,
Stability of peakons for the generalized modified Camassa-Holm equation, J. Differential Equations, 266 (2019), 7749-7779.
doi: 10.1016/j.jde.2018.12.014. |
[27] |
C. He and C. Qu,
Global weak solutions for the two-component Novikov equation, Electron. Res. Arch., 28 (2020), 1545-1562.
doi: 10.3934/era.2020081. |
[28] |
A. A. Himonas and C. Holliman,
The Cauchy problem for the Novikov equation, Nonlinearity, 25 (2012), 449-479.
doi: 10.1088/0951-7715/25/2/449. |
[29] |
D. Holm and R. Ivanov,
Smooth and peaked solitons of the Camassa-Holm equation and applications, J. Geom. Symm. Phys., 22 (2011), 13-49.
doi: 10.7546/jgsp-22-2011-13-49. |
[30] |
D. D. Holm, J. E. Marsden and T. S. Ratiu,
The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. Math., 137 (1998), 1-81.
doi: 10.1006/aima.1998.1721. |
[31] |
A. N. W. Hone and J. P. Wang,
Integrable peakon equations with cubic nonlinearity, J. Phys. A: Math. Theor., 41 (2008), 372002.
doi: 10.1088/1751-8113/41/37/372002. |
[32] |
R. S. Johnson,
Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid Mech., 455 (2002), 63-82.
doi: 10.1017/S0022112001007224. |
[33] |
R. S. Johnson,
On solutions of the Camassa-Holm equation, Proc. R. Soc. Lond. A, 459 (2003), 1687-1708.
doi: 10.1098/rspa.2002.1078. |
[34] |
R. S. Johnson,
The Camassa-Holm equation for water waves moving over a shear flow, Fluid Dyn. Res., 33 (2003), 97-111.
doi: 10.1016/S0169-5983(03)00036-4. |
[35] |
J. Lenells,
Stability of periodic peakons, Int. Math. Res. Not., 2004 (2004), 485-499.
doi: 10.1155/S1073792804132431. |
[36] |
J. Lenells,
A variational approach to the stability of periodic peakons, J. Nonlin. Math. Phys., 11 (2004), 151-163.
doi: 10.2991/jnmp.2004.11.2.2. |
[37] |
J. Lenells, G. Misiolek and F. Tiǧlay,
Integrable evolution equations on spaces of tensor densities and their peakon solutions, Commun. Math. Phys., 299 (2010), 129-161.
doi: 10.1007/s00220-010-1069-9. |
[38] |
Y. A. Li and P. J. Olver,
Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differential Equations, 162 (2000), 27-63.
doi: 10.1006/jdeq.1999.3683. |
[39] |
X. Liu,
Orbital stability of peakons for a modified Camassa-Holm equation with higher-order nonlinearity, Discrete Contin. Dyn. Syst. A, 38 (2018), 5505-5521.
doi: 10.3934/dcds.2018242. |
[40] |
X. Liu, Y. Liu and C. Qu,
Orbital stability of train of peakons for an integrable modified Camassa-Holm equation, Adv. Math., 255 (2014), 1-37.
doi: 10.1016/j.aim.2013.12.032. |
[41] |
X. Liu, Y. Liu and C. Qu,
Stability of peakons for the Novikov equation, J. Math. Pures Appl., 101 (2014), 172-187.
doi: 10.1016/j.matpur.2013.05.007. |
[42] |
Y. Liu, C. Qu and Y. Zhang,
Stability of peridic peakons for the modified $\mu$-Camassa-Holm equation, Phys. D, 250 (2013), 66-74.
doi: 10.1016/j.physd.2013.02.001. |
[43] |
Y. Matsuno,
The peakon limit of the N-soliton solution of the Camassa-Holm equation, J. Phys. Soc. Jpn., 76 (2007), 034003.
doi: 10.1143/JPSJ.76.034003. |
[44] |
G. Misiolek,
A shallow water equation as a geodesic flow on the Bott-Birasoro group, J. Geom. Phys., 24 (1998), 203-208.
doi: 10.1016/S0393-0440(97)00010-7. |
[45] |
B. Moon,
Single peaked traveling wave solutions to a generalized $\mu$-Novikov equation, Adv. Nonlinear Anal., 10 (2021), 66-75.
doi: 10.1515/anona-2020-0106. |
[46] |
V. Novikov,
Generalizations of the Camassa-Holm equation, J. Phys. A: Math. Theor., 42 (2009), 342002.
doi: 10.1088/1751-8113/42/34/342002. |
[47] |
P. J. Olver and P. Rosenau,
Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E, 53 (1996), 1900-1906.
doi: 10.1103/PhysRevE.53.1900. |
[48] |
P. Popivanov and A. Slavova,
Nonlinear Waves: An Introduction, World Scientific, Hackensack, (2011).
doi: 10.1142/7867. |
[49] |
Z. Qiao,
A new integrable equation with cuspons and W/M-shape-peaks solitons, J. Math. Phys., 47 (2006), 112701.
doi: 10.1063/1.2365758. |
[50] |
Z. Qiao and X. Li,
An integrable equation with nonsmooth solitons, Theor. Math. Phys., 167 (2011), 584-589.
doi: 10.1007/s11232-011-0044-8. |
[51] |
C. Qu, Y. Fu and Y. Liu,
Well-posedness, wave breaking and peakons for a modified $\mu$-Camassa-Holm equation, J. Funct. Anal., 266 (2014), 433-477.
doi: 10.1016/j.jfa.2013.09.021. |
[52] |
C. Qu, X. Liu and Y. Liu,
Stability of peakons for an integrable modified Camassa-Holm equation with cubic nonlinearity, Commun. Math. Phys., 322 (2013), 967-997.
doi: 10.1007/s00220-013-1749-3. |
[53] |
J. F. Toland,
Stokes waves, Topol. Methods Nonlinear Anal., 7 (1996), 1-48.
doi: 10.12775/TMNA.1996.001. |
[54] |
X. Wu and Z. Yin,
Global weak solutions for the Novikov equation, J. Phys. A: Math. Theor., 44 (2011), 055202.
doi: 10.1088/1751-8113/44/5/055202. |
[55] |
R. Xu and Y. Yang,
Low regularity of solutions to the Rotation-Camassa-Holm type equation with the Coriolis effect, Disctete Contin. Dyn. Syst., 40 (2020), 6507-6527.
doi: 10.3934/dcds.2020288. |
[56] |
M. Yang, Y. Li and Y. Zhao,
On the Cauchy problem of generalized Fokas-Olver-Resenau-Qiao equation, Appl. Anal., 97 (2018), 2246-2268.
doi: 10.1080/00036811.2017.1359565. |
[1] |
Aiyong Chen, Xinhui Lu. Orbital stability of elliptic periodic peakons for the modified Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1703-1735. doi: 10.3934/dcds.2020090 |
[2] |
Xingxing Liu. Orbital stability of peakons for a modified Camassa-Holm equation with higher-order nonlinearity. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5505-5521. doi: 10.3934/dcds.2018242 |
[3] |
Min Zhu, Ying Wang. Blow-up of solutions to the periodic generalized modified Camassa-Holm equation with varying linear dispersion. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 645-661. doi: 10.3934/dcds.2017027 |
[4] |
Xi Tu, Zhaoyang Yin. Local well-posedness and blow-up phenomena for a generalized Camassa-Holm equation with peakon solutions. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2781-2801. doi: 10.3934/dcds.2016.36.2781 |
[5] |
Stephen C. Anco, Elena Recio, María L. Gandarias, María S. Bruzón. A nonlinear generalization of the Camassa-Holm equation with peakon solutions. Conference Publications, 2015, 2015 (special) : 29-37. doi: 10.3934/proc.2015.0029 |
[6] |
Yu Gao, Jian-Guo Liu. The modified Camassa-Holm equation in Lagrangian coordinates. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2545-2592. doi: 10.3934/dcdsb.2018067 |
[7] |
Yongsheng Mi, Boling Guo, Chunlai Mu. Persistence properties for the generalized Camassa-Holm equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1623-1630. doi: 10.3934/dcdsb.2019243 |
[8] |
Defu Chen, Yongsheng Li, Wei Yan. On the Cauchy problem for a generalized Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 871-889. doi: 10.3934/dcds.2015.35.871 |
[9] |
Min Zhu, Shuanghu Zhang. Blow-up of solutions to the periodic modified Camassa-Holm equation with varying linear dispersion. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7235-7256. doi: 10.3934/dcds.2016115 |
[10] |
Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087 |
[11] |
Guangying Lv, Mingxin Wang. Some remarks for a modified periodic Camassa-Holm system. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1161-1180. doi: 10.3934/dcds.2011.30.1161 |
[12] |
Stephen Anco, Daniel Kraus. Hamiltonian structure of peakons as weak solutions for the modified Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4449-4465. doi: 10.3934/dcds.2018194 |
[13] |
Ying Fu. A note on the Cauchy problem of a modified Camassa-Holm equation with cubic nonlinearity. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2011-2039. doi: 10.3934/dcds.2015.35.2011 |
[14] |
Zhaoyang Yin. Well-posedness and blow-up phenomena for the periodic generalized Camassa-Holm equation. Communications on Pure and Applied Analysis, 2004, 3 (3) : 501-508. doi: 10.3934/cpaa.2004.3.501 |
[15] |
Li Yang, Zeng Rong, Shouming Zhou, Chunlai Mu. Uniqueness of conservative solutions to the generalized Camassa-Holm equation via characteristics. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5205-5220. doi: 10.3934/dcds.2018230 |
[16] |
Shouming Zhou, Chunlai Mu. Global conservative and dissipative solutions of the generalized Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1713-1739. doi: 10.3934/dcds.2013.33.1713 |
[17] |
Shaoyong Lai, Qichang Xie, Yunxi Guo, YongHong Wu. The existence of weak solutions for a generalized Camassa-Holm equation. Communications on Pure and Applied Analysis, 2011, 10 (1) : 45-57. doi: 10.3934/cpaa.2011.10.45 |
[18] |
Li Yang, Chunlai Mu, Shouming Zhou, Xinyu Tu. The global conservative solutions for the generalized camassa-holm equation. Electronic Research Archive, 2019, 27: 37-67. doi: 10.3934/era.2019009 |
[19] |
Caixia Chen, Shu Wen. Wave breaking phenomena and global solutions for a generalized periodic two-component Camassa-Holm system. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3459-3484. doi: 10.3934/dcds.2012.32.3459 |
[20] |
Yongsheng Mi, Boling Guo, Chunlai Mu. On an $N$-Component Camassa-Holm equation with peakons. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1575-1601. doi: 10.3934/dcds.2017065 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]