\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Sharp condition of global well-posedness for inhomogeneous nonlinear Schrödinger equation

  • * Corresponding author: Chao Yang

    * Corresponding author: Chao Yang
Abstract Full Text(HTML) Related Papers Cited by
  • This paper studies the Cauchy problem of Schrödinger equation with inhomogeneous nonlinear term $ V(x)|\varphi|^{p-1}\varphi $ in $ \mathbb{R}^n $. For the case $ p > 1+\frac{4(1+\varepsilon_0)}{n} (0 < \varepsilon_0 < \frac{2}{n-2}) $, by introducing a potential well, we obtain some invariant sets of solution and give a sharp condition of global existence and finite time blowup of solution; for the case $ p < 1+\frac{4}{n} $, we obtain the global existence of solution for any initial data in $ H^1 (\mathbb{R}^n) $.

    Mathematics Subject Classification: Primary: 35Q55, 35G25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics 10, New York University, New York, 2003. doi: 10.1090/cln/010.
    [2] A. de Bouard and R. Fukuizumi, Stability of standing waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities, Ann. Henri Poincaré, 6 (2005), 1157-1177.  doi: 10.1007/s00023-005-0236-6.
    [3] G. Fibich and X.-P. Wang, Stability of solitary waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities, Physica. D., 175 (2003), 96-108.  doi: 10.1016/S0167-2789(02)00626-7.
    [4] R. Fukuizumi and M. Ohta, Instability of standing waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities, J. Math. Kyoto Univ., 45 (2005), 145-158.  doi: 10.1215/kjm/1250282971.
    [5] T. S. Gill, Optical guiding of laser beam in nonuniform plasma, Pramana, 55 (2000), 835-842.  doi: 10.1007/s12043-000-0051-z.
    [6] M. GrillakisJ. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal., 74 (1987), 160-197.  doi: 10.1016/0022-1236(87)90044-9.
    [7] H. Guo and T. Wang, A note on sign-changing solutions for the Schrödinger Poisson systerm, Electron. Res. Arch., 28 (2020), 195-203.  doi: 10.3934/era.2020013.
    [8] L. Huang and J. Chen, Existence and asymptotic behavior of bound states for a class of nonautonomous Schrödinger-Poisson system, Electron. Res. Arch., 28 (2020), 383-404.  doi: 10.3934/era.2020022.
    [9] T. Kato, On nonlinear Schrödinger equations, Ann. Inst. H. Poincaé Phys. Théor., 46 (1987), 113-129. 
    [10] T. Kato, Nonlinear Schrödinger equations, Schrödinger Operators (Sonderborg, 1988), 218–263. Lecture Notes in Physics, 345, Springer, Berlin, (1989). doi: 10.1007/3-540-51783-9_22.
    [11] Y. LiuX.-P. Wang and K. Wang, Instability of standing waves of the Schrödinger equation with inhomogeneous nonlinearity, Trans. Amer. Math. Soc., 358 (2006), 2105-2122.  doi: 10.1090/S0002-9947-05-03763-3.
    [12] F. Merle, Nonexistence of minimal blow-up solutions of equations iut = ∆uk(x)|u|4/N u in RN, Ann. Inst. H. Poincaré Phys. Théor., 64 (1996), 33-85. 
    [13] P. Y. H. PangH. Tang and Y. Wang, Blow-up solutions of inhomogeneous nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations, 26 (2006), 137-169.  doi: 10.1007/s00526-005-0362-5.
    [14] Y. Wang, Global existence and blow up of solutions for the inhomogenoeous nonlinear Schrödinger equation in $\mathbb{R}^2$, J. Math. Anal. Appl., 338 (2008), 1008-1019.  doi: 10.1016/j.jmaa.2007.05.057.
    [15] M. Zhang and M. S. Ahmed, Sharp conditions of global existence for nonlinear Schrödinger equation with a harmonic potential, Adv. Nonlinear Anal., 9 (2020), 882-894.  doi: 10.1515/anona-2020-0031.
    [16] X. Zhao and W. Yan, Existence of standing waves for quasi-linear Schrödinger equations on $T^n$, Adv. Nonlinear Anal., 9 (2020), 978-993.  doi: 10.1515/anona-2020-0038.
  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views(145) PDF downloads(120) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return