March  2022, 15(3): 573-586. doi: 10.3934/dcdss.2021152

A non-standard class of variational problems of Herglotz type

Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal

* Corresponding author: natalia@ua.pt

Received  February 2020 Revised  February 2021 Published  March 2022 Early access  November 2021

Fund Project: This work is supported by The Center for Research and Development in Mathematics and Applications (CIDMA) through the Portuguese Foundation for Science and Technology (FCT - Fundação para a Ciência e a Tecnologia), references UIDB/04106/2020 and UIDP/04106/2020

In this paper, we extend the variational problem of Herglotz considering the case where the Lagrangian depends not only on the independent variable, an unknown function $ x $ and its derivative and an unknown functional $ z $, but also on the end points conditions and a real parameter. Herglotz's problems of calculus of variations of this type cannot be solved using the standard theory. Main results of this paper are necessary optimality condition of Euler-Lagrange type, natural boundary conditions and the Dubois-Reymond condition for our non-standard variational problem of Herglotz type. We also prove a necessary optimality condition that arises as a consequence of the Lagrangian dependence of the parameter. Our results not only provide a generalization to previous results, but also give some other interesting optimality conditions as special cases. In addition, two examples are given in order to illustrate our results.

Citation: Natália Martins. A non-standard class of variational problems of Herglotz type. Discrete and Continuous Dynamical Systems - S, 2022, 15 (3) : 573-586. doi: 10.3934/dcdss.2021152
References:
[1]

L. AbrunheiroL. Machado and N. Martins, The Herglotz variational problem on spheres and its optimal control approach, J. Math. Anal., 7 (2016), 12-22. 

[2]

R. Almeida and A. B. Malinowska, Fractional variational principle of Herglotz, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 2367-2381.  doi: 10.3934/dcdsb.2014.19.2367.

[3]

P. A. F. CruzD. F. M. Torres and A. S. I. Zinober, A non-classical class of variational problems, Int. J. Mathematical Modelling and Numerical Optimisation, 1 (2010), 227-236. 

[4]

B. Georgieva, Symmetries of the Herglotz variational principle in the case of one independent variable, Annuaire Univ. Sofia Fac. Math. Inform., 100 (2010), 113-122. 

[5]

B. Georgieva and R. Guenther, First Noether-type theorem for the generalized variational principle of Herglotz, Topol. Methods Nonlinear Anal., 20 (2002), 261-273.  doi: 10.12775/TMNA.2002.036.

[6]

B. Georgieva and R. Guenther, Second Noether-type theorem for the generalized variational principle of Herglotz, Topol. Methods Nonlinear Anal., 26 (2005), 307-314.  doi: 10.12775/TMNA.2005.034.

[7]

B. GeorgievaR. Guenther and T. Bodurov, Generalized variational principle of Herglotz for several independent variables. First Noether-type theorem, J. Math. Phys., 44 (2003), 3911-3927.  doi: 10.1063/1.1597419.

[8]

R. B. Guenther and J. A. Gottsch, The Herglotz lectures on contact transformations and Hamiltonian systems, Juliusz Schauder Center for Nonlinear Studies, Nicholas Copernicus University, Torún, 1 (1996).

[9]

R. B. GuentherJ. A. Gottsch and D. B. Kramer, The Herglotz algorithm for constructing canonical transformations, SIAM Rev., 38 (1996), 287-293.  doi: 10.1137/1038042.

[10]

G. Herglotz, Berührungstransformationen, Lectures at the University of Göttingen, Göttingen, 1930.

[11]

K. A. Hoffman, Stability results for constrained calculus of variations problems: An analysis of the twisted elastic loop, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461 (2005), 1357-1381.  doi: 10.1098/rspa.2004.1435.

[12]

L. MachadoL. Abrunheiro and N. Martins, Variational and optimal control approaches for the second-order Herglotz problem on spheres, J. Optim. Theory Appl., 182 (2019), 965-983.  doi: 10.1007/s10957-018-1424-0.

[13]

A. B. Malinowska and D. F. M. Torres, Natural boundary conditions in the calculus of variations, Math. Methods Appl. Sci., 33 (2010), 1712-1722.  doi: 10.1002/mma.1289.

[14]

J. C. OrumR. T. HudspethW. Black and R. B. Guenther, Extension of the Herglotz algorithm to nonautonomous canonical transformations, SIAM Rev., 42 (2000), 83-90.  doi: 10.1137/S003614459834762X.

[15]

S. P. S. SantosN. Martins and D. F. M. Torres, Higher-order variational problems of Herglotz type, Vietnam J. Math., 42 (2014), 409-419.  doi: 10.1007/s10013-013-0048-9.

[16]

S. P. S. SantosN. Martins and D. F. M. Torres, Variational problems of Herglotz type with time delay: Dubois-Reymond condition and Noether's first theorem, Discrete Contin. Dyn. Syst., 35 (2015), 4593-4610.  doi: 10.3934/dcds.2015.35.4593.

[17]

S. P. S. SantosN. Martins and D. F. M. Torres, Noether's theorem for higher-order variational problems of Herglotz type, Discrete Contin. Dyn. Syst., Dynamical Systems, Differential Equations and Applications. 10th AIMS Conference. Suppl., 2015 (2015), 990-999.  doi: 10.3934/proc.2015.990.

[18]

S. P. S. SantosN. Martins and D. F. M. Torres, Higher-order variational problems of Herglotz with time delay, Pure Appl. Funct. Anal., 1 (2016), 291-307. 

[19]

S. P. S. SantosN. Martins and D. F. M. Torres, Noether currents for higher-order variational problems of Herglotz type with time delay, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 91-102.  doi: 10.3934/dcdss.2018006.

[20]

D. TavaresR. Almeida and D. F. M. Torres, Fractional Herglotz variational problems of variable order, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 143-154.  doi: 10.3934/dcdss.2018009.

[21]

X. Tian and Y. Zhang, Noether's theorem for fractional Herglotz variational principle in phase space, Chaos Solitons and Fractals, 119 (2019), 50-54.  doi: 10.1016/j.chaos.2018.12.005.

[22]

B. van Brunt, The Calculus of Variations, Universitext, Springer-Verlag, New York, 2004. doi: 10.1007/b97436.

[23]

Y. Zhang and X. Tian, Conservation laws of nonconservative nonholonomic system based on Herglotz variational problem, Phys. Lett. A, 383 (2019), 691-696.  doi: 10.1016/j.physleta.2018.11.034.

[24]

A. Zinober and S. Sufahani, A non-standard optimal control problem arising in an economics application, Pesqui. Oper., 33 (2013). doi: 10.1590/S0101-74382013000100004.

show all references

References:
[1]

L. AbrunheiroL. Machado and N. Martins, The Herglotz variational problem on spheres and its optimal control approach, J. Math. Anal., 7 (2016), 12-22. 

[2]

R. Almeida and A. B. Malinowska, Fractional variational principle of Herglotz, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 2367-2381.  doi: 10.3934/dcdsb.2014.19.2367.

[3]

P. A. F. CruzD. F. M. Torres and A. S. I. Zinober, A non-classical class of variational problems, Int. J. Mathematical Modelling and Numerical Optimisation, 1 (2010), 227-236. 

[4]

B. Georgieva, Symmetries of the Herglotz variational principle in the case of one independent variable, Annuaire Univ. Sofia Fac. Math. Inform., 100 (2010), 113-122. 

[5]

B. Georgieva and R. Guenther, First Noether-type theorem for the generalized variational principle of Herglotz, Topol. Methods Nonlinear Anal., 20 (2002), 261-273.  doi: 10.12775/TMNA.2002.036.

[6]

B. Georgieva and R. Guenther, Second Noether-type theorem for the generalized variational principle of Herglotz, Topol. Methods Nonlinear Anal., 26 (2005), 307-314.  doi: 10.12775/TMNA.2005.034.

[7]

B. GeorgievaR. Guenther and T. Bodurov, Generalized variational principle of Herglotz for several independent variables. First Noether-type theorem, J. Math. Phys., 44 (2003), 3911-3927.  doi: 10.1063/1.1597419.

[8]

R. B. Guenther and J. A. Gottsch, The Herglotz lectures on contact transformations and Hamiltonian systems, Juliusz Schauder Center for Nonlinear Studies, Nicholas Copernicus University, Torún, 1 (1996).

[9]

R. B. GuentherJ. A. Gottsch and D. B. Kramer, The Herglotz algorithm for constructing canonical transformations, SIAM Rev., 38 (1996), 287-293.  doi: 10.1137/1038042.

[10]

G. Herglotz, Berührungstransformationen, Lectures at the University of Göttingen, Göttingen, 1930.

[11]

K. A. Hoffman, Stability results for constrained calculus of variations problems: An analysis of the twisted elastic loop, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461 (2005), 1357-1381.  doi: 10.1098/rspa.2004.1435.

[12]

L. MachadoL. Abrunheiro and N. Martins, Variational and optimal control approaches for the second-order Herglotz problem on spheres, J. Optim. Theory Appl., 182 (2019), 965-983.  doi: 10.1007/s10957-018-1424-0.

[13]

A. B. Malinowska and D. F. M. Torres, Natural boundary conditions in the calculus of variations, Math. Methods Appl. Sci., 33 (2010), 1712-1722.  doi: 10.1002/mma.1289.

[14]

J. C. OrumR. T. HudspethW. Black and R. B. Guenther, Extension of the Herglotz algorithm to nonautonomous canonical transformations, SIAM Rev., 42 (2000), 83-90.  doi: 10.1137/S003614459834762X.

[15]

S. P. S. SantosN. Martins and D. F. M. Torres, Higher-order variational problems of Herglotz type, Vietnam J. Math., 42 (2014), 409-419.  doi: 10.1007/s10013-013-0048-9.

[16]

S. P. S. SantosN. Martins and D. F. M. Torres, Variational problems of Herglotz type with time delay: Dubois-Reymond condition and Noether's first theorem, Discrete Contin. Dyn. Syst., 35 (2015), 4593-4610.  doi: 10.3934/dcds.2015.35.4593.

[17]

S. P. S. SantosN. Martins and D. F. M. Torres, Noether's theorem for higher-order variational problems of Herglotz type, Discrete Contin. Dyn. Syst., Dynamical Systems, Differential Equations and Applications. 10th AIMS Conference. Suppl., 2015 (2015), 990-999.  doi: 10.3934/proc.2015.990.

[18]

S. P. S. SantosN. Martins and D. F. M. Torres, Higher-order variational problems of Herglotz with time delay, Pure Appl. Funct. Anal., 1 (2016), 291-307. 

[19]

S. P. S. SantosN. Martins and D. F. M. Torres, Noether currents for higher-order variational problems of Herglotz type with time delay, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 91-102.  doi: 10.3934/dcdss.2018006.

[20]

D. TavaresR. Almeida and D. F. M. Torres, Fractional Herglotz variational problems of variable order, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 143-154.  doi: 10.3934/dcdss.2018009.

[21]

X. Tian and Y. Zhang, Noether's theorem for fractional Herglotz variational principle in phase space, Chaos Solitons and Fractals, 119 (2019), 50-54.  doi: 10.1016/j.chaos.2018.12.005.

[22]

B. van Brunt, The Calculus of Variations, Universitext, Springer-Verlag, New York, 2004. doi: 10.1007/b97436.

[23]

Y. Zhang and X. Tian, Conservation laws of nonconservative nonholonomic system based on Herglotz variational problem, Phys. Lett. A, 383 (2019), 691-696.  doi: 10.1016/j.physleta.2018.11.034.

[24]

A. Zinober and S. Sufahani, A non-standard optimal control problem arising in an economics application, Pesqui. Oper., 33 (2013). doi: 10.1590/S0101-74382013000100004.

[1]

Simão P. S. Santos, Natália Martins, Delfim F. M. Torres. Variational problems of Herglotz type with time delay: DuBois--Reymond condition and Noether's first theorem. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4593-4610. doi: 10.3934/dcds.2015.35.4593

[2]

Stefano Bianchini. On the Euler-Lagrange equation for a variational problem. Discrete and Continuous Dynamical Systems, 2007, 17 (3) : 449-480. doi: 10.3934/dcds.2007.17.449

[3]

Agnieszka B. Malinowska, Delfim F. M. Torres. Euler-Lagrange equations for composition functionals in calculus of variations on time scales. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 577-593. doi: 10.3934/dcds.2011.29.577

[4]

Giovanni Bonfanti, Arrigo Cellina. The validity of the Euler-Lagrange equation. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 511-517. doi: 10.3934/dcds.2010.28.511

[5]

Clara Carlota, António Ornelas. The DuBois-Reymond differential inclusion for autonomous optimal control problems with pointwise-constrained derivatives. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 467-484. doi: 10.3934/dcds.2011.29.467

[6]

Menita Carozza, Jan Kristensen, Antonia Passarelli di Napoli. On the validity of the Euler-Lagrange system. Communications on Pure and Applied Analysis, 2015, 14 (1) : 51-62. doi: 10.3934/cpaa.2015.14.51

[7]

Felix Sadyrbaev. Nonlinear boundary value problems of the calculus of variations. Conference Publications, 2003, 2003 (Special) : 760-770. doi: 10.3934/proc.2003.2003.760

[8]

Nuno R. O. Bastos, Rui A. C. Ferreira, Delfim F. M. Torres. Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 417-437. doi: 10.3934/dcds.2011.29.417

[9]

Simão P. S. Santos, Natália Martins, Delfim F. M. Torres. Noether's theorem for higher-order variational problems of Herglotz type. Conference Publications, 2015, 2015 (special) : 990-999. doi: 10.3934/proc.2015.990

[10]

Bernard Dacorogna, Giovanni Pisante, Ana Margarida Ribeiro. On non quasiconvex problems of the calculus of variations. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 961-983. doi: 10.3934/dcds.2005.13.961

[11]

Andrzej Nowakowski. Variational analysis of semilinear plate equation with free boundary conditions. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3133-3154. doi: 10.3934/dcds.2015.35.3133

[12]

Andrzej Nowakowski. Variational approach to stability of semilinear wave equation with nonlinear boundary conditions. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2603-2616. doi: 10.3934/dcdsb.2014.19.2603

[13]

Simão P. S. Santos, Natália Martins, Delfim F. M. Torres. Noether currents for higher-order variational problems of Herglotz type with time delay. Discrete and Continuous Dynamical Systems - S, 2018, 11 (1) : 91-102. doi: 10.3934/dcdss.2018006

[14]

Dina Tavares, Ricardo Almeida, Delfim F. M. Torres. Fractional Herglotz variational problems of variable order. Discrete and Continuous Dynamical Systems - S, 2018, 11 (1) : 143-154. doi: 10.3934/dcdss.2018009

[15]

Ivar Ekeland. From Frank Ramsey to René Thom: A classical problem in the calculus of variations leading to an implicit differential equation. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1101-1119. doi: 10.3934/dcds.2010.28.1101

[16]

Pedro L. García, Antonio Fernández, César Rodrigo. Variational integrators for discrete Lagrange problems. Journal of Geometric Mechanics, 2010, 2 (4) : 343-374. doi: 10.3934/jgm.2010.2.343

[17]

Yutian Lei, Zhongxue Lü. Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1987-2005. doi: 10.3934/dcds.2013.33.1987

[18]

Yuan Xu, Xin Jin, Saiwei Wang, Yang Tang. Optimal synchronization control of multiple euler-lagrange systems via event-triggered reinforcement learning. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1495-1518. doi: 10.3934/dcdss.2020377

[19]

Toshiyuki Ogawa, Takashi Okuda. Bifurcation analysis to Swift-Hohenberg equation with Steklov type boundary conditions. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 273-297. doi: 10.3934/dcds.2009.25.273

[20]

Hannes Eberlein, Michael Růžička. Global weak solutions for an newtonian fluid interacting with a Koiter type shell under natural boundary conditions. Discrete and Continuous Dynamical Systems - S, 2021, 14 (11) : 4093-4140. doi: 10.3934/dcdss.2020419

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (169)
  • HTML views (132)
  • Cited by (0)

Other articles
by authors

[Back to Top]