doi: 10.3934/dcdss.2021152
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

A non-standard class of variational problems of Herglotz type

Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal

* Corresponding author: natalia@ua.pt

Received  February 2020 Revised  February 2021 Early access November 2021

Fund Project: This work is supported by The Center for Research and Development in Mathematics and Applications (CIDMA) through the Portuguese Foundation for Science and Technology (FCT - Fundação para a Ciência e a Tecnologia), references UIDB/04106/2020 and UIDP/04106/2020

In this paper, we extend the variational problem of Herglotz considering the case where the Lagrangian depends not only on the independent variable, an unknown function $ x $ and its derivative and an unknown functional $ z $, but also on the end points conditions and a real parameter. Herglotz's problems of calculus of variations of this type cannot be solved using the standard theory. Main results of this paper are necessary optimality condition of Euler-Lagrange type, natural boundary conditions and the Dubois-Reymond condition for our non-standard variational problem of Herglotz type. We also prove a necessary optimality condition that arises as a consequence of the Lagrangian dependence of the parameter. Our results not only provide a generalization to previous results, but also give some other interesting optimality conditions as special cases. In addition, two examples are given in order to illustrate our results.

Citation: Natália Martins. A non-standard class of variational problems of Herglotz type. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2021152
References:
[1]

L. AbrunheiroL. Machado and N. Martins, The Herglotz variational problem on spheres and its optimal control approach, J. Math. Anal., 7 (2016), 12-22.   Google Scholar

[2]

R. Almeida and A. B. Malinowska, Fractional variational principle of Herglotz, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 2367-2381.  doi: 10.3934/dcdsb.2014.19.2367.  Google Scholar

[3]

P. A. F. CruzD. F. M. Torres and A. S. I. Zinober, A non-classical class of variational problems, Int. J. Mathematical Modelling and Numerical Optimisation, 1 (2010), 227-236.   Google Scholar

[4]

B. Georgieva, Symmetries of the Herglotz variational principle in the case of one independent variable, Annuaire Univ. Sofia Fac. Math. Inform., 100 (2010), 113-122.   Google Scholar

[5]

B. Georgieva and R. Guenther, First Noether-type theorem for the generalized variational principle of Herglotz, Topol. Methods Nonlinear Anal., 20 (2002), 261-273.  doi: 10.12775/TMNA.2002.036.  Google Scholar

[6]

B. Georgieva and R. Guenther, Second Noether-type theorem for the generalized variational principle of Herglotz, Topol. Methods Nonlinear Anal., 26 (2005), 307-314.  doi: 10.12775/TMNA.2005.034.  Google Scholar

[7]

B. GeorgievaR. Guenther and T. Bodurov, Generalized variational principle of Herglotz for several independent variables. First Noether-type theorem, J. Math. Phys., 44 (2003), 3911-3927.  doi: 10.1063/1.1597419.  Google Scholar

[8]

R. B. Guenther and J. A. Gottsch, The Herglotz lectures on contact transformations and Hamiltonian systems, Juliusz Schauder Center for Nonlinear Studies, Nicholas Copernicus University, Torún, 1 (1996). Google Scholar

[9]

R. B. GuentherJ. A. Gottsch and D. B. Kramer, The Herglotz algorithm for constructing canonical transformations, SIAM Rev., 38 (1996), 287-293.  doi: 10.1137/1038042.  Google Scholar

[10]

G. Herglotz, Berührungstransformationen, Lectures at the University of Göttingen, Göttingen, 1930. Google Scholar

[11]

K. A. Hoffman, Stability results for constrained calculus of variations problems: An analysis of the twisted elastic loop, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461 (2005), 1357-1381.  doi: 10.1098/rspa.2004.1435.  Google Scholar

[12]

L. MachadoL. Abrunheiro and N. Martins, Variational and optimal control approaches for the second-order Herglotz problem on spheres, J. Optim. Theory Appl., 182 (2019), 965-983.  doi: 10.1007/s10957-018-1424-0.  Google Scholar

[13]

A. B. Malinowska and D. F. M. Torres, Natural boundary conditions in the calculus of variations, Math. Methods Appl. Sci., 33 (2010), 1712-1722.  doi: 10.1002/mma.1289.  Google Scholar

[14]

J. C. OrumR. T. HudspethW. Black and R. B. Guenther, Extension of the Herglotz algorithm to nonautonomous canonical transformations, SIAM Rev., 42 (2000), 83-90.  doi: 10.1137/S003614459834762X.  Google Scholar

[15]

S. P. S. SantosN. Martins and D. F. M. Torres, Higher-order variational problems of Herglotz type, Vietnam J. Math., 42 (2014), 409-419.  doi: 10.1007/s10013-013-0048-9.  Google Scholar

[16]

S. P. S. SantosN. Martins and D. F. M. Torres, Variational problems of Herglotz type with time delay: Dubois-Reymond condition and Noether's first theorem, Discrete Contin. Dyn. Syst., 35 (2015), 4593-4610.  doi: 10.3934/dcds.2015.35.4593.  Google Scholar

[17]

S. P. S. SantosN. Martins and D. F. M. Torres, Noether's theorem for higher-order variational problems of Herglotz type, Discrete Contin. Dyn. Syst., Dynamical Systems, Differential Equations and Applications. 10th AIMS Conference. Suppl., 2015 (2015), 990-999.  doi: 10.3934/proc.2015.990.  Google Scholar

[18]

S. P. S. SantosN. Martins and D. F. M. Torres, Higher-order variational problems of Herglotz with time delay, Pure Appl. Funct. Anal., 1 (2016), 291-307.   Google Scholar

[19]

S. P. S. SantosN. Martins and D. F. M. Torres, Noether currents for higher-order variational problems of Herglotz type with time delay, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 91-102.  doi: 10.3934/dcdss.2018006.  Google Scholar

[20]

D. TavaresR. Almeida and D. F. M. Torres, Fractional Herglotz variational problems of variable order, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 143-154.  doi: 10.3934/dcdss.2018009.  Google Scholar

[21]

X. Tian and Y. Zhang, Noether's theorem for fractional Herglotz variational principle in phase space, Chaos Solitons and Fractals, 119 (2019), 50-54.  doi: 10.1016/j.chaos.2018.12.005.  Google Scholar

[22]

B. van Brunt, The Calculus of Variations, Universitext, Springer-Verlag, New York, 2004. doi: 10.1007/b97436.  Google Scholar

[23]

Y. Zhang and X. Tian, Conservation laws of nonconservative nonholonomic system based on Herglotz variational problem, Phys. Lett. A, 383 (2019), 691-696.  doi: 10.1016/j.physleta.2018.11.034.  Google Scholar

[24]

A. Zinober and S. Sufahani, A non-standard optimal control problem arising in an economics application, Pesqui. Oper., 33 (2013). doi: 10.1590/S0101-74382013000100004.  Google Scholar

show all references

References:
[1]

L. AbrunheiroL. Machado and N. Martins, The Herglotz variational problem on spheres and its optimal control approach, J. Math. Anal., 7 (2016), 12-22.   Google Scholar

[2]

R. Almeida and A. B. Malinowska, Fractional variational principle of Herglotz, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 2367-2381.  doi: 10.3934/dcdsb.2014.19.2367.  Google Scholar

[3]

P. A. F. CruzD. F. M. Torres and A. S. I. Zinober, A non-classical class of variational problems, Int. J. Mathematical Modelling and Numerical Optimisation, 1 (2010), 227-236.   Google Scholar

[4]

B. Georgieva, Symmetries of the Herglotz variational principle in the case of one independent variable, Annuaire Univ. Sofia Fac. Math. Inform., 100 (2010), 113-122.   Google Scholar

[5]

B. Georgieva and R. Guenther, First Noether-type theorem for the generalized variational principle of Herglotz, Topol. Methods Nonlinear Anal., 20 (2002), 261-273.  doi: 10.12775/TMNA.2002.036.  Google Scholar

[6]

B. Georgieva and R. Guenther, Second Noether-type theorem for the generalized variational principle of Herglotz, Topol. Methods Nonlinear Anal., 26 (2005), 307-314.  doi: 10.12775/TMNA.2005.034.  Google Scholar

[7]

B. GeorgievaR. Guenther and T. Bodurov, Generalized variational principle of Herglotz for several independent variables. First Noether-type theorem, J. Math. Phys., 44 (2003), 3911-3927.  doi: 10.1063/1.1597419.  Google Scholar

[8]

R. B. Guenther and J. A. Gottsch, The Herglotz lectures on contact transformations and Hamiltonian systems, Juliusz Schauder Center for Nonlinear Studies, Nicholas Copernicus University, Torún, 1 (1996). Google Scholar

[9]

R. B. GuentherJ. A. Gottsch and D. B. Kramer, The Herglotz algorithm for constructing canonical transformations, SIAM Rev., 38 (1996), 287-293.  doi: 10.1137/1038042.  Google Scholar

[10]

G. Herglotz, Berührungstransformationen, Lectures at the University of Göttingen, Göttingen, 1930. Google Scholar

[11]

K. A. Hoffman, Stability results for constrained calculus of variations problems: An analysis of the twisted elastic loop, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461 (2005), 1357-1381.  doi: 10.1098/rspa.2004.1435.  Google Scholar

[12]

L. MachadoL. Abrunheiro and N. Martins, Variational and optimal control approaches for the second-order Herglotz problem on spheres, J. Optim. Theory Appl., 182 (2019), 965-983.  doi: 10.1007/s10957-018-1424-0.  Google Scholar

[13]

A. B. Malinowska and D. F. M. Torres, Natural boundary conditions in the calculus of variations, Math. Methods Appl. Sci., 33 (2010), 1712-1722.  doi: 10.1002/mma.1289.  Google Scholar

[14]

J. C. OrumR. T. HudspethW. Black and R. B. Guenther, Extension of the Herglotz algorithm to nonautonomous canonical transformations, SIAM Rev., 42 (2000), 83-90.  doi: 10.1137/S003614459834762X.  Google Scholar

[15]

S. P. S. SantosN. Martins and D. F. M. Torres, Higher-order variational problems of Herglotz type, Vietnam J. Math., 42 (2014), 409-419.  doi: 10.1007/s10013-013-0048-9.  Google Scholar

[16]

S. P. S. SantosN. Martins and D. F. M. Torres, Variational problems of Herglotz type with time delay: Dubois-Reymond condition and Noether's first theorem, Discrete Contin. Dyn. Syst., 35 (2015), 4593-4610.  doi: 10.3934/dcds.2015.35.4593.  Google Scholar

[17]

S. P. S. SantosN. Martins and D. F. M. Torres, Noether's theorem for higher-order variational problems of Herglotz type, Discrete Contin. Dyn. Syst., Dynamical Systems, Differential Equations and Applications. 10th AIMS Conference. Suppl., 2015 (2015), 990-999.  doi: 10.3934/proc.2015.990.  Google Scholar

[18]

S. P. S. SantosN. Martins and D. F. M. Torres, Higher-order variational problems of Herglotz with time delay, Pure Appl. Funct. Anal., 1 (2016), 291-307.   Google Scholar

[19]

S. P. S. SantosN. Martins and D. F. M. Torres, Noether currents for higher-order variational problems of Herglotz type with time delay, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 91-102.  doi: 10.3934/dcdss.2018006.  Google Scholar

[20]

D. TavaresR. Almeida and D. F. M. Torres, Fractional Herglotz variational problems of variable order, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 143-154.  doi: 10.3934/dcdss.2018009.  Google Scholar

[21]

X. Tian and Y. Zhang, Noether's theorem for fractional Herglotz variational principle in phase space, Chaos Solitons and Fractals, 119 (2019), 50-54.  doi: 10.1016/j.chaos.2018.12.005.  Google Scholar

[22]

B. van Brunt, The Calculus of Variations, Universitext, Springer-Verlag, New York, 2004. doi: 10.1007/b97436.  Google Scholar

[23]

Y. Zhang and X. Tian, Conservation laws of nonconservative nonholonomic system based on Herglotz variational problem, Phys. Lett. A, 383 (2019), 691-696.  doi: 10.1016/j.physleta.2018.11.034.  Google Scholar

[24]

A. Zinober and S. Sufahani, A non-standard optimal control problem arising in an economics application, Pesqui. Oper., 33 (2013). doi: 10.1590/S0101-74382013000100004.  Google Scholar

[1]

Simão P. S. Santos, Natália Martins, Delfim F. M. Torres. Variational problems of Herglotz type with time delay: DuBois--Reymond condition and Noether's first theorem. Discrete & Continuous Dynamical Systems, 2015, 35 (9) : 4593-4610. doi: 10.3934/dcds.2015.35.4593

[2]

Stefano Bianchini. On the Euler-Lagrange equation for a variational problem. Discrete & Continuous Dynamical Systems, 2007, 17 (3) : 449-480. doi: 10.3934/dcds.2007.17.449

[3]

Agnieszka B. Malinowska, Delfim F. M. Torres. Euler-Lagrange equations for composition functionals in calculus of variations on time scales. Discrete & Continuous Dynamical Systems, 2011, 29 (2) : 577-593. doi: 10.3934/dcds.2011.29.577

[4]

Giovanni Bonfanti, Arrigo Cellina. The validity of the Euler-Lagrange equation. Discrete & Continuous Dynamical Systems, 2010, 28 (2) : 511-517. doi: 10.3934/dcds.2010.28.511

[5]

Clara Carlota, António Ornelas. The DuBois-Reymond differential inclusion for autonomous optimal control problems with pointwise-constrained derivatives. Discrete & Continuous Dynamical Systems, 2011, 29 (2) : 467-484. doi: 10.3934/dcds.2011.29.467

[6]

Menita Carozza, Jan Kristensen, Antonia Passarelli di Napoli. On the validity of the Euler-Lagrange system. Communications on Pure & Applied Analysis, 2015, 14 (1) : 51-62. doi: 10.3934/cpaa.2015.14.51

[7]

Felix Sadyrbaev. Nonlinear boundary value problems of the calculus of variations. Conference Publications, 2003, 2003 (Special) : 760-770. doi: 10.3934/proc.2003.2003.760

[8]

Nuno R. O. Bastos, Rui A. C. Ferreira, Delfim F. M. Torres. Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete & Continuous Dynamical Systems, 2011, 29 (2) : 417-437. doi: 10.3934/dcds.2011.29.417

[9]

Simão P. S. Santos, Natália Martins, Delfim F. M. Torres. Noether's theorem for higher-order variational problems of Herglotz type. Conference Publications, 2015, 2015 (special) : 990-999. doi: 10.3934/proc.2015.990

[10]

Bernard Dacorogna, Giovanni Pisante, Ana Margarida Ribeiro. On non quasiconvex problems of the calculus of variations. Discrete & Continuous Dynamical Systems, 2005, 13 (4) : 961-983. doi: 10.3934/dcds.2005.13.961

[11]

Andrzej Nowakowski. Variational analysis of semilinear plate equation with free boundary conditions. Discrete & Continuous Dynamical Systems, 2015, 35 (7) : 3133-3154. doi: 10.3934/dcds.2015.35.3133

[12]

Andrzej Nowakowski. Variational approach to stability of semilinear wave equation with nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2603-2616. doi: 10.3934/dcdsb.2014.19.2603

[13]

Simão P. S. Santos, Natália Martins, Delfim F. M. Torres. Noether currents for higher-order variational problems of Herglotz type with time delay. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 91-102. doi: 10.3934/dcdss.2018006

[14]

Dina Tavares, Ricardo Almeida, Delfim F. M. Torres. Fractional Herglotz variational problems of variable order. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 143-154. doi: 10.3934/dcdss.2018009

[15]

Ivar Ekeland. From Frank Ramsey to René Thom: A classical problem in the calculus of variations leading to an implicit differential equation. Discrete & Continuous Dynamical Systems, 2010, 28 (3) : 1101-1119. doi: 10.3934/dcds.2010.28.1101

[16]

Pedro L. García, Antonio Fernández, César Rodrigo. Variational integrators for discrete Lagrange problems. Journal of Geometric Mechanics, 2010, 2 (4) : 343-374. doi: 10.3934/jgm.2010.2.343

[17]

Yutian Lei, Zhongxue Lü. Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems, 2013, 33 (5) : 1987-2005. doi: 10.3934/dcds.2013.33.1987

[18]

Yuan Xu, Xin Jin, Saiwei Wang, Yang Tang. Optimal synchronization control of multiple euler-lagrange systems via event-triggered reinforcement learning. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1495-1518. doi: 10.3934/dcdss.2020377

[19]

Toshiyuki Ogawa, Takashi Okuda. Bifurcation analysis to Swift-Hohenberg equation with Steklov type boundary conditions. Discrete & Continuous Dynamical Systems, 2009, 25 (1) : 273-297. doi: 10.3934/dcds.2009.25.273

[20]

Hannes Eberlein, Michael Růžička. Global weak solutions for an newtonian fluid interacting with a Koiter type shell under natural boundary conditions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (11) : 4093-4140. doi: 10.3934/dcdss.2020419

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (82)
  • HTML views (67)
  • Cited by (0)

Other articles
by authors

[Back to Top]