July  2022, 15(7): 1685-1697. doi: 10.3934/dcdss.2021162

An algorithm for solving linear nonhomogeneous quaternion-valued differential equations and some open problems

1. 

College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua 321004, China

2. 

School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China

3. 

Department of Mathematics, Faculty of Science and Technology, University of Macau, Macau 999078, China

*Corresponding author: Yonghui Xia

Received  August 2021 Revised  October 2021 Published  July 2022 Early access  December 2021

Quaternion-valued differential equations (QDEs) is a new kind of differential equations. In this paper, an algorithm was presented for solving linear nonhomogeneous quaternionic-valued differential equations. The variation of constants formula was established for the nonhomogeneous quaternionic-valued differential equations. Moreover, several examples showed the feasibility of our algorithm. Finally, some open problems end this paper.

Citation: Yonghui Xia, Hai Huang, Kit Ian Kou. An algorithm for solving linear nonhomogeneous quaternion-valued differential equations and some open problems. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1685-1697. doi: 10.3934/dcdss.2021162
References:
[1] S. L. Adler, Quaternionic Quantum Mechanics and Quantum Fields, Oxford University Press, New York, 1995. 
[2]

S. L. Adler, Quaternionic quantum field theory, Commun. Math. Phys., 104 (1986), 611-656.  doi: 10.1007/BF01211069.

[3]

J. J. Buckley and T. Feuring, Introduction to fuzzy partial differential equations, Fuzzy Sets and Systems, 105 (1999), 241-248.  doi: 10.1016/S0165-0114(98)00323-6.

[4]

J. Campos and J. Mawhin, Periodic solutions of quaternionic-values ordinary differential equations, Ann. Mat. Pura Appl., 185 (2006), S109–S127. doi: 10.1007/s10231-004-0139-z.

[5]

D. Chen, M. Feckan and J. Wang, On the stability of linear quaternion-valued differential equations, Qual. Theor. Dyn. Syst., 2021.

[6]

L. Chen, Definition of determinant and Cramer solution over the quaternion field, Acta Math. Sinica (N.S.), 7 (1991), 171-180.  doi: 10.1007/BF02633946.

[7]

L. Chen, Inverse matrix and properties of double determinant over quaternion field, Sci. China Ser. A, 34 (1991), 528-540. 

[8]

D. ChengK. Kou and Y. Xia, Floquet theory for quaternion-valued differential equations, Qual. Theor. Dyn. Syst., 19 (2020), 1-23.  doi: 10.1007/s12346-020-00355-8.

[9]
[10]

A. GasullJ. Llibre and X. Zhang, One dimensional quaternion homogeneous polynomial differential equations, J. Math. Phys., 50 (2009), 082705.  doi: 10.1063/1.3139115.

[11]

J. D. Gibbon, A quaternionic structure in the three-dimensional Euler and ideal magnetohydrodynamics equation, Physica D, 166 (2002), 17-28.  doi: 10.1016/S0167-2789(02)00434-7.

[12]

J. D. GibbonD. D. HolmR. M. Kerr and I. Roulstone, Quaternions and particle dynamics in the Euler fluid equations, Nonlinearity, 19 (2006), 1969-1983.  doi: 10.1088/0951-7715/19/8/011.

[13]

K. KouW. Liu and Y. Xia, Solve the linear quaternion-valued differential equations having multiple eigenvalues, J. Math. Phys., 60 (2019), 023510. 

[14]

K. KouY. Lou and Y. Xia, Zeros of a class of transcendental equation with application to bifurcation of DDE, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 26 (2016), 1650062.  doi: 10.1142/S0218127416500620.

[15]

K. Kou and Y. Xia, Linear quaternion differential equations: Basic theory and fundamental results, Stud. Appl. Math., 141 (2018), 3-45.  doi: 10.1111/sapm.12211.

[16]

S. Leo and G. Ducati, Delay time in quaternionic quantum mechanics, J. Math. Phys., 53 (2012), 022102.  doi: 10.1063/1.3684747.

[17]

S. Leo and G. Ducati, Solving simple quaternionic differential equations, J. Math. Phys., 44 (2003), 2224-2233.  doi: 10.1063/1.1563735.

[18]

S. LeoG. Ducati and C. Nishi, Quaternionic potentials in non-relativistic quantum mechanics, J. Phys. A., 35 (2002), 5411-5426.  doi: 10.1088/0305-4470/35/26/305.

[19] J. Li, Singular Nonlinear Travelling Wave Equations: Bifurcations and Exact Solutions, Science Press, Beijing, 2013. 
[20]

X. LiJ. Shen and R. Rakkiyappan, Persistent impulsive effects on stability of functional differential equations with finite or infinite delay, Appl. Math. Computat., 329 (2018), 14-22.  doi: 10.1016/j.amc.2018.01.036.

[21]

Z. Li and C. Wang, Cauchy matrix and Liouville formula of quaternion impulsive dynamic equations on time scales, Open Math., 18 (2020), 353-377.  doi: 10.1515/math-2020-0021.

[22]

Z. LiC. WangR. P. Agarwal and D. O'Regan, Commutativity of quaternion-matrix-valued functions and quaternion matrix dynamic equations on time scales, Stud Appl Math., 146 (2021), 139-210.  doi: 10.1111/sapm.12344.

[23]

Y. LiuY. ZhengJ. LuJ. Cao and L. Rutkowski, Constrained quaternion-variable convex optimization: A quaternion-valued recurrent neural network approach, IEEE Trans. Neu. Netw. Learning syst., 31 (2020), 1022-1035.  doi: 10.1109/TNNLS.2019.2916597.

[24]

J. Marins, X. Yun, E. Bachmann, R. McGhee and M. Zyda, An extended Kalman filter for quaternion-based orientation estimation using MARG sensors, IEEE/RSJ International Conference on Intelligent Robots and Systems Maui, 2001. doi: 10.1109/IROS.2001.976367.

[25]

D. PengX. LiR. Rakkiyappan and Y. Ding, Stabilization of stochastic delayed systems: Event-triggered impulsive control, Appl. Math. Comput., 401 (2021), 126054.  doi: 10.1016/j.amc.2021.126054.

[26]

V. N. Roubtsov and I. Roulstone, Holomorphic structures in hydrodynamical models of nearly geostrophic flow, Proc. R. Soc. London. Ser. A., 457 (2001), 1519-1531.  doi: 10.1098/rspa.2001.0779.

[27]

V. N. Rubtsov and I. Roulstone, Examples of quaternionic and Keller structures in Hamiltonian models of nearly geostrophic flow, J. Phys. A., 30 (1997), 3739. 

[28]

Y. Song and X. Tang, Stability, steady-state bifurcations and Turing patterns in a predator-prey model with herd behavior and prey-taxis, Stud. Appl. Math., 139 (2017), 371-404.  doi: 10.1111/sapm.12165.

[29]

Y. Song and J. Wei, Local Hopf bifurcation and global periodic solutions in a delayed predator-prey system, J. Math. Anal. Appl., 301 (2005), 1-21.  doi: 10.1016/j.jmaa.2004.06.056.

[30]

L. SuoM. Feckan and J. Wang, Quaternion-valued linear impulsive differential equations, Qual. Theor. Dyn. Syst., 20 (2021), 33.  doi: 10.1007/s12346-021-00467-9.

[31]

F. Udwadia and A. Schttle, An alternative derivation of the quaternion equations of motion for rigid-body rotational dynamics, J. Appl. Mech., 77 (2010), 044505.  doi: 10.1115/1.4000917.

[32]

J. R. Wertz, Spacecraft Attitude Determination and Control, Kluwer Academic Publishers, The Netherlands, 1978.

[33]

P. Wilczynski, Quaternionic-valued ordinary differential equations. The Riccati equation, J. Differential Equations, 247 (2009), 2163-2187.  doi: 10.1016/j.jde.2009.06.015.

[34]

P. Wilczynski, Quaternionic-valued ordinary differential equations II. Coinciding sectors, J. Differential Equations, 252 (2012), 4503-4528.  doi: 10.1016/j.jde.2012.01.005.

[35] Y. XiaK. Kou and and Y. Liu, Theoy and Applications of Quaternion-Valued Differential Equations, Science Press, Beijing, 2021. 
[36]

B. ZhangW. ZhuY. Xia and Y. Bai, A unified analysis of exact traveling wave solutions for the fractional-order and integer-order Biswas-Milovic equation: Via bifurcation theory of dynamical system, Qual. Theor. Dyn. Syst., 19 (2020), 11.  doi: 10.1007/s12346-020-00352-x.

[37]

X. Zhang, Global structure of quaternion polynomial differential equations, Commun. Math. Phys., 303 (2011), 301-316.  doi: 10.1007/s00220-011-1196-y.

[38]

Y. Zhang and Y. Xia, Traveling wave solutions of generalized Dullin-Gottwald-Holm equation with parabolic law nonlinearity, Qual. Theor. Dyn. Syst., 20 (2021), 67.  doi: 10.1007/s12346-021-00503-8.

[39]

Y. ZhaoX. Li and J. Cao, Global exponential stability for impulsive systems with infinite distributed delay based on flexible impulse frequency, Appl. Math. Comput., 386 (2020), 125467.  doi: 10.1016/j.amc.2020.125467.

[40]

J. Zhu and J. Sun, Existence and uniqueness results for quaternion-valued nonlinear impulsive differential systems, J. Syst. Sci. Complex., 31 (2018), 596-607.  doi: 10.1007/s11424-017-6158-9.

[41]

W. ZhuY. XiaB. Zhang and Y. Bai, Exact traveling wave solutions and bifurcations of the time fractional differential equations with applications, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 29 (2019), 1950041.  doi: 10.1142/S021812741950041X.

show all references

References:
[1] S. L. Adler, Quaternionic Quantum Mechanics and Quantum Fields, Oxford University Press, New York, 1995. 
[2]

S. L. Adler, Quaternionic quantum field theory, Commun. Math. Phys., 104 (1986), 611-656.  doi: 10.1007/BF01211069.

[3]

J. J. Buckley and T. Feuring, Introduction to fuzzy partial differential equations, Fuzzy Sets and Systems, 105 (1999), 241-248.  doi: 10.1016/S0165-0114(98)00323-6.

[4]

J. Campos and J. Mawhin, Periodic solutions of quaternionic-values ordinary differential equations, Ann. Mat. Pura Appl., 185 (2006), S109–S127. doi: 10.1007/s10231-004-0139-z.

[5]

D. Chen, M. Feckan and J. Wang, On the stability of linear quaternion-valued differential equations, Qual. Theor. Dyn. Syst., 2021.

[6]

L. Chen, Definition of determinant and Cramer solution over the quaternion field, Acta Math. Sinica (N.S.), 7 (1991), 171-180.  doi: 10.1007/BF02633946.

[7]

L. Chen, Inverse matrix and properties of double determinant over quaternion field, Sci. China Ser. A, 34 (1991), 528-540. 

[8]

D. ChengK. Kou and Y. Xia, Floquet theory for quaternion-valued differential equations, Qual. Theor. Dyn. Syst., 19 (2020), 1-23.  doi: 10.1007/s12346-020-00355-8.

[9]
[10]

A. GasullJ. Llibre and X. Zhang, One dimensional quaternion homogeneous polynomial differential equations, J. Math. Phys., 50 (2009), 082705.  doi: 10.1063/1.3139115.

[11]

J. D. Gibbon, A quaternionic structure in the three-dimensional Euler and ideal magnetohydrodynamics equation, Physica D, 166 (2002), 17-28.  doi: 10.1016/S0167-2789(02)00434-7.

[12]

J. D. GibbonD. D. HolmR. M. Kerr and I. Roulstone, Quaternions and particle dynamics in the Euler fluid equations, Nonlinearity, 19 (2006), 1969-1983.  doi: 10.1088/0951-7715/19/8/011.

[13]

K. KouW. Liu and Y. Xia, Solve the linear quaternion-valued differential equations having multiple eigenvalues, J. Math. Phys., 60 (2019), 023510. 

[14]

K. KouY. Lou and Y. Xia, Zeros of a class of transcendental equation with application to bifurcation of DDE, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 26 (2016), 1650062.  doi: 10.1142/S0218127416500620.

[15]

K. Kou and Y. Xia, Linear quaternion differential equations: Basic theory and fundamental results, Stud. Appl. Math., 141 (2018), 3-45.  doi: 10.1111/sapm.12211.

[16]

S. Leo and G. Ducati, Delay time in quaternionic quantum mechanics, J. Math. Phys., 53 (2012), 022102.  doi: 10.1063/1.3684747.

[17]

S. Leo and G. Ducati, Solving simple quaternionic differential equations, J. Math. Phys., 44 (2003), 2224-2233.  doi: 10.1063/1.1563735.

[18]

S. LeoG. Ducati and C. Nishi, Quaternionic potentials in non-relativistic quantum mechanics, J. Phys. A., 35 (2002), 5411-5426.  doi: 10.1088/0305-4470/35/26/305.

[19] J. Li, Singular Nonlinear Travelling Wave Equations: Bifurcations and Exact Solutions, Science Press, Beijing, 2013. 
[20]

X. LiJ. Shen and R. Rakkiyappan, Persistent impulsive effects on stability of functional differential equations with finite or infinite delay, Appl. Math. Computat., 329 (2018), 14-22.  doi: 10.1016/j.amc.2018.01.036.

[21]

Z. Li and C. Wang, Cauchy matrix and Liouville formula of quaternion impulsive dynamic equations on time scales, Open Math., 18 (2020), 353-377.  doi: 10.1515/math-2020-0021.

[22]

Z. LiC. WangR. P. Agarwal and D. O'Regan, Commutativity of quaternion-matrix-valued functions and quaternion matrix dynamic equations on time scales, Stud Appl Math., 146 (2021), 139-210.  doi: 10.1111/sapm.12344.

[23]

Y. LiuY. ZhengJ. LuJ. Cao and L. Rutkowski, Constrained quaternion-variable convex optimization: A quaternion-valued recurrent neural network approach, IEEE Trans. Neu. Netw. Learning syst., 31 (2020), 1022-1035.  doi: 10.1109/TNNLS.2019.2916597.

[24]

J. Marins, X. Yun, E. Bachmann, R. McGhee and M. Zyda, An extended Kalman filter for quaternion-based orientation estimation using MARG sensors, IEEE/RSJ International Conference on Intelligent Robots and Systems Maui, 2001. doi: 10.1109/IROS.2001.976367.

[25]

D. PengX. LiR. Rakkiyappan and Y. Ding, Stabilization of stochastic delayed systems: Event-triggered impulsive control, Appl. Math. Comput., 401 (2021), 126054.  doi: 10.1016/j.amc.2021.126054.

[26]

V. N. Roubtsov and I. Roulstone, Holomorphic structures in hydrodynamical models of nearly geostrophic flow, Proc. R. Soc. London. Ser. A., 457 (2001), 1519-1531.  doi: 10.1098/rspa.2001.0779.

[27]

V. N. Rubtsov and I. Roulstone, Examples of quaternionic and Keller structures in Hamiltonian models of nearly geostrophic flow, J. Phys. A., 30 (1997), 3739. 

[28]

Y. Song and X. Tang, Stability, steady-state bifurcations and Turing patterns in a predator-prey model with herd behavior and prey-taxis, Stud. Appl. Math., 139 (2017), 371-404.  doi: 10.1111/sapm.12165.

[29]

Y. Song and J. Wei, Local Hopf bifurcation and global periodic solutions in a delayed predator-prey system, J. Math. Anal. Appl., 301 (2005), 1-21.  doi: 10.1016/j.jmaa.2004.06.056.

[30]

L. SuoM. Feckan and J. Wang, Quaternion-valued linear impulsive differential equations, Qual. Theor. Dyn. Syst., 20 (2021), 33.  doi: 10.1007/s12346-021-00467-9.

[31]

F. Udwadia and A. Schttle, An alternative derivation of the quaternion equations of motion for rigid-body rotational dynamics, J. Appl. Mech., 77 (2010), 044505.  doi: 10.1115/1.4000917.

[32]

J. R. Wertz, Spacecraft Attitude Determination and Control, Kluwer Academic Publishers, The Netherlands, 1978.

[33]

P. Wilczynski, Quaternionic-valued ordinary differential equations. The Riccati equation, J. Differential Equations, 247 (2009), 2163-2187.  doi: 10.1016/j.jde.2009.06.015.

[34]

P. Wilczynski, Quaternionic-valued ordinary differential equations II. Coinciding sectors, J. Differential Equations, 252 (2012), 4503-4528.  doi: 10.1016/j.jde.2012.01.005.

[35] Y. XiaK. Kou and and Y. Liu, Theoy and Applications of Quaternion-Valued Differential Equations, Science Press, Beijing, 2021. 
[36]

B. ZhangW. ZhuY. Xia and Y. Bai, A unified analysis of exact traveling wave solutions for the fractional-order and integer-order Biswas-Milovic equation: Via bifurcation theory of dynamical system, Qual. Theor. Dyn. Syst., 19 (2020), 11.  doi: 10.1007/s12346-020-00352-x.

[37]

X. Zhang, Global structure of quaternion polynomial differential equations, Commun. Math. Phys., 303 (2011), 301-316.  doi: 10.1007/s00220-011-1196-y.

[38]

Y. Zhang and Y. Xia, Traveling wave solutions of generalized Dullin-Gottwald-Holm equation with parabolic law nonlinearity, Qual. Theor. Dyn. Syst., 20 (2021), 67.  doi: 10.1007/s12346-021-00503-8.

[39]

Y. ZhaoX. Li and J. Cao, Global exponential stability for impulsive systems with infinite distributed delay based on flexible impulse frequency, Appl. Math. Comput., 386 (2020), 125467.  doi: 10.1016/j.amc.2020.125467.

[40]

J. Zhu and J. Sun, Existence and uniqueness results for quaternion-valued nonlinear impulsive differential systems, J. Syst. Sci. Complex., 31 (2018), 596-607.  doi: 10.1007/s11424-017-6158-9.

[41]

W. ZhuY. XiaB. Zhang and Y. Bai, Exact traveling wave solutions and bifurcations of the time fractional differential equations with applications, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 29 (2019), 1950041.  doi: 10.1142/S021812741950041X.

[1]

Shouchuan Hu, Nikolaos S. Papageorgiou. Nonlinear Neumann equations driven by a nonhomogeneous differential operator. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1055-1078. doi: 10.3934/cpaa.2011.10.1055

[2]

Hüseyin Bereketoğlu, Mihály Pituk. Asymptotic constancy for nonhomogeneous linear differential equations with unbounded delays. Conference Publications, 2003, 2003 (Special) : 100-107. doi: 10.3934/proc.2003.2003.100

[3]

Xin Zhong. Global strong solution and exponential decay for nonhomogeneous Navier-Stokes and magnetohydrodynamic equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3563-3578. doi: 10.3934/dcdsb.2020246

[4]

Fei Chen, Yongsheng Li, Huan Xu. Global solution to the 3D nonhomogeneous incompressible MHD equations with some large initial data. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 2945-2967. doi: 10.3934/dcds.2016.36.2945

[5]

Xin Zhong. Global strong solution to the nonhomogeneous micropolar fluid equations with large initial data and vacuum. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021296

[6]

Nur Fadhilah Ibrahim. An algorithm for the largest eigenvalue of nonhomogeneous nonnegative polynomials. Numerical Algebra, Control and Optimization, 2014, 4 (1) : 75-91. doi: 10.3934/naco.2014.4.75

[7]

Roberto Garrappa, Eleonora Messina, Antonia Vecchio. Effect of perturbation in the numerical solution of fractional differential equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2679-2694. doi: 10.3934/dcdsb.2017188

[8]

Fernando Casas, Cristina Chiralt. A Lie--Deprit perturbation algorithm for linear differential equations with periodic coefficients. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 959-975. doi: 10.3934/dcds.2014.34.959

[9]

Can Li, Weihua Deng, Lijing Zhao. Well-posedness and numerical algorithm for the tempered fractional differential equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1989-2015. doi: 10.3934/dcdsb.2019026

[10]

Burcu Gürbüz. A computational approximation for the solution of retarded functional differential equations and their applications to science and engineering. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021069

[11]

Minoo Kamrani. Numerical solution of partial differential equations with stochastic Neumann boundary conditions. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5337-5354. doi: 10.3934/dcdsb.2019061

[12]

Sertan Alkan. A new solution method for nonlinear fractional integro-differential equations. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1065-1077. doi: 10.3934/dcdss.2015.8.1065

[13]

Iasson Karafyllis, Lars Grüne. Feedback stabilization methods for the numerical solution of ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 283-317. doi: 10.3934/dcdsb.2011.16.283

[14]

Changrong Zhu, Bin Long. The periodic solutions bifurcated from a homoclinic solution for parabolic differential equations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3793-3808. doi: 10.3934/dcdsb.2016121

[15]

Huanting Li, Yunfei Peng, Kuilin Wu. The existence and properties of the solution of a class of nonlinear differential equations with switching at variable times. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021289

[16]

Chao Wang, Zhien Li, Ravi P. Agarwal. Hyers-Ulam-Rassias stability of high-dimensional quaternion impulsive fuzzy dynamic equations on time scales. Discrete and Continuous Dynamical Systems - S, 2022, 15 (2) : 359-386. doi: 10.3934/dcdss.2021041

[17]

Arnold Dikansky. Fitzhugh-Nagumo equations in a nonhomogeneous medium. Conference Publications, 2005, 2005 (Special) : 216-224. doi: 10.3934/proc.2005.2005.216

[18]

Rakesh Arora. Multiplicity results for nonhomogeneous elliptic equations with singular nonlinearities. Communications on Pure and Applied Analysis, 2022, 21 (6) : 2253-2269. doi: 10.3934/cpaa.2022056

[19]

Feng Bao, Yanzhao Cao, Weidong Zhao. A first order semi-discrete algorithm for backward doubly stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2015, 20 (5) : 1297-1313. doi: 10.3934/dcdsb.2015.20.1297

[20]

Brian D. O. Anderson, Shaoshuai Mou, A. Stephen Morse, Uwe Helmke. Decentralized gradient algorithm for solution of a linear equation. Numerical Algebra, Control and Optimization, 2016, 6 (3) : 319-328. doi: 10.3934/naco.2016014

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (237)
  • HTML views (195)
  • Cited by (0)

Other articles
by authors

[Back to Top]