[1]
|
R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2nd edition, Pure and Applied Mathematics, Vol. 140, Elsevier/Academic Press, Amsterdam, 2003.
|
[2]
|
G. A. Afrouzi and K. J. Brown, On principal eigenvalues for boundary value problems with indefinite weight and Robin boundary conditions, Proc. Amer. Math. Soc., 127 (1999), 125-130.
doi: 10.1090/S0002-9939-99-04561-X.
|
[3]
|
H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 620-709.
doi: 10.1137/1018114.
|
[4]
|
H. Amann, Nonlinear elliptic equations with nonlinear boundary conditions, North-Holland Math. Studies, 21 (1976), 43-63.
|
[5]
|
A. Ambrosetti and A. Malchiodi, Nonlinear Analysis and Semilinear Elliptic Problems, Cambridge Studies in Advanced Mathematics, No. 104, Cambridge University Press, Cambridge, 2007.
doi: 10.1017/CBO9780511618260.
|
[6]
|
A. Ambrosetti and G. Prodi, A Primer of Nonlinear Analysis, Cambridge Studies in Advanced Mathematics, No. 34, Cambridge University Press, Cambridge, 1995.
|
[7]
|
J. Bergh and J. Löfström, Interpolation Spaces, An Introduction, Springer-Verlag, Berlin Heidelberg New York, 1976.
|
[8]
|
J.-M. Bony, Principe du maximum dans les espaces de Sobolev, C. R. Acad. Sc. Paris, 265 (1967), 333-336.
|
[9]
|
K. J. Brown and S. S. Lin, On the existence of positive eigenfunctions for an eigenvalue problem with indefinite weight function, J. Math. Anal. Appl., 75 (1980), 112-120.
doi: 10.1016/0022-247X(80)90309-1.
|
[10]
|
R. F. Brown, A Topological Introduction to Nonlinear Analysis, 3$^{rd}$ edition, Springer, Cham, 2014.
doi: 10.1007/978-3-319-11794-2.
|
[11]
|
R. S. Cantrell and C. Cosner, Diffusive logistic equations with indefinite weights: Population models in disrupted environments, Proc. Roy. Soc. Edinburgh Sect. A, 112 (1989), 293-318.
doi: 10.1017/S030821050001876X.
|
[12]
|
K.-C. Chang, Methods in Nonlinear Analysis, Springer Monogr. Math., Springer-Verlag, Berlin, 2005.
|
[13]
|
I. Chavel, Eigenvalues in Riemannian Geometry, Pure and Applied Mathematics, 115. Academic Press, Inc., Orlando, FL, 1984.
|
[14]
|
J. Chazarain and A. Piriou, Introduction à La Théorie Des Équations Aux Dérivées Partielles Linéaires, Gauthier-Villars, Paris, 1981.
|
[15]
|
S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Springer-Verlag, New York-Berlin, 1982.
|
[16]
|
M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis, 8 (1971), 321-340.
doi: 10.1016/0022-1236(71)90015-2.
|
[17]
|
M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues, and linearized stability, Arch. Rational Mech. Anal., 52 (1973), 161-180.
doi: 10.1007/BF00282325.
|
[18]
|
E. N. Dancer, Global solution branches for positive mappings, Arch. Rational Mech. Anal., 52 (1973), 181-192.
doi: 10.1007/BF00282326.
|
[19]
|
D. G. de Figueiredo, Positive solutions of semilinear elliptic problems, Differential Equations, 957 (1982), 34-87.
|
[20]
|
K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.
doi: 10.1007/978-3-662-00547-7.
|
[21]
|
P. Drábek and J. Milota, Methods of Nonlinear Analysis, Applications to Differential Equations, 2$^{nd}$ edition, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser/Springer Basel AG, Basel, 2013.
doi: 10.1007/978-3-0348-0387-8.
|
[22]
|
W. H. Fleming, A selection-migration model in population genetics, J. Math. Biol., 2 (1975), 219-233.
doi: 10.1007/BF00277151.
|
[23]
|
J. M. Fraile, P. Koch Medina, J. López-Gómez and S. Merino, Elliptic eigenvalue problems and unbounded continua of positive solutions of a semilinear elliptic equation, J. Differential Equations, 127 (1996), 295-319.
doi: 10.1006/jdeq.1996.0071.
|
[24]
|
J. García-Melián, R. Gómez-Reñasco, J. López-Gómez and J. C. Sabina de Lis, Pointwise growth and uniqueness of positive solutions for a class of sublinear elliptic problems where bifurcation from infinity occurs, Arch. Rational Mech. Anal., 145 (1998), 261-289.
doi: 10.1007/s002050050130.
|
[25]
|
J. García-Melián, J. D. Rossi and J. C. Sabina de Lis, Existence and uniqueness of positive solutions to elliptic problems with sublinear mixed boundary conditions, Commun. Contemp. Math., 11 (2009), 585-613.
doi: 10.1142/S0219199709003508.
|
[26]
|
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001.
|
[27]
|
I. C. Gohberg and M. G. Kreĭn, The basic propositions on defect numbers, root numbers and indices of linear operators, Uspehi Mat. Nauk., 12 (1957), 43–118; English translation: Amer. Math. Soc. Transl., 13 (1960), 185–264.
doi: 10.1090/trans2/013/08.
|
[28]
|
P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity, Pitman Research Notes in Mathematical Series, 247, Longman Scientific & Technical, Harlow, New York, 1991.
|
[29]
|
P. Hess and T. Kato, On some linear and nonlinear eigenvalue problems with an indefinite weight function, Comm. Partial Differential Equations, 5 (1980), 999-1030.
doi: 10.1080/03605308008820162.
|
[30]
|
L. Hörmander, The Analysis of Linear Partial Differential Operators III, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 274. Springer-Verlag, Berlin, 1994.
|
[31]
|
M. A. Krasnosel'skii, Positive Solutions of Operator Equations, P. Noordhoff, Groningen, 1964.
|
[32]
|
M. G. Kreĭn and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Amer. Math. Soc. Transl., 1950 (1950), 128 pp.
|
[33]
|
O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, Rhode Island 1968.
|
[34]
|
O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Equations of Elliptic Type, Nauka, Moscow, 1964 (Russian), English translation; Academic Press, New York London, 1968.
|
[35]
|
J. López-Gómez, Metasolutions: Malthus versus Verhulst in population dynamics, A dream of Volterra, Elsevier/North-Holland, Amsterdam, Stationary Partial Differential Equations, 2 (2005), 211-309.
doi: 10.1016/S1874-5733(05)80012-9.
|
[36]
|
J. López-Gómez, Linear Second Order Elliptic Operators, World Scientific Publishing, Co. Pte. Ltd., Hackensack, NJ, 2013.
doi: 10.1142/8664.
|
[37]
|
J. López-Gómez and J. C. Sabina de Lis, First variations of principal eigenvalues with respect to the domain and point-wise growth of positive solutions for problems where bifurcation from infinity occurs, J. Differential Equations, 148 (1998), 47-64.
doi: 10.1006/jdeq.1998.3456.
|
[38]
|
A. Manes and A. M. Micheletti, Un'estensione della teoria variazionale classica degli autovalori per operatori ellitici del secondo ordine, Boll. Un. Mat. Ital., 7 (1973), 285-301.
|
[39]
|
J. Moser, A new proof of de Giorgi's theorem concerning the regularity problem for elliptic differential equations, Comm. Pure Appl. Math., 13 (1960), 457-468.
doi: 10.1002/cpa.3160130308.
|
[40]
|
L. Nirenberg, Topics in Nonlinear Functional Analysis, New York University, Courant Institute of Mathematical Sciences, New York; revised reprint of the 1974 original, Courant Lecture Notes in Mathematics, No, 6, American Mathematical Society, Providence, Rhode Island, 2001.
doi: 10.1090/cln/006.
|
[41]
|
T.-C. Ouyang, On the positive solutions of semilinear equations $\Delta u+\lambda u-hu^{p} = 0$ on the compact manifolds, Trans. Amer. Math. Soc., 331 (1992), 503-527.
doi: 10.2307/2154124.
|
[42]
|
C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York London, 1992.
|
[43]
|
M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Corrected reprint of the 1967 original. Springer-Verlag, New York, 1984.
doi: 10.1007/978-1-4612-5282-5.
|
[44]
|
P. H. Rabinowitz, Some aspects of nonlinear eigenvalue problems, Rocky Mountain J. Math., 3 (1973), 161-202.
doi: 10.1216/RMJ-1973-3-2-161.
|
[45]
|
R. Redlinger, Über die $C^{2}$-Kompaktheit der Bahn von Lösungen semilinearer parabolischer systeme, Proc. Roy. Soc. Edinburgh, 93 (1982/83), 99-103.
doi: 10.1017/S0308210500031693.
|
[46]
|
M. Reed and B. Simon, Methods of Modern Mathematical Physics IV: Analysis of Operators, Academic Press, New York San Francisco London, 1978.
|
[47]
|
T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, De Gruyter Series in Nonlinear Analysis and Applications, 3. Walter de Gruyter & Co., Berlin, 1996.
doi: 10.1515/9783110812411.
|
[48]
|
D. H. Sattinger, Topics in Stability and Bifurcation Theory, Lecture Notes in Mathematics, No. 309, Springer-Verlag, New York Heidelberg Berlin, 1973.
|
[49]
|
J. C. Saut and B. Scheurer, Remarks on a non linear equation arising in population genetics, Comm. Partial Differential Equations, 3 (1978), 907-931.
doi: 10.1080/03605307808820080.
|
[50]
|
M. Schechter, Principles of Functional Analysis, 2$^{nd}$ edition, Graduate Studies in Mathematics, 36. American Mathematical Society, Providence, RI, 2002.
doi: 10.1090/gsm/036.
|
[51]
|
N. N. Semenov, Chemical Kinetics and Chain Reactions, Clarendon Press, Oxford, 1935.
|
[52]
|
S. Senn, On a nonlinear elliptic eigenvalue problem with Neumann boundary conditions, with an application to population genetics, Comm. Partial Differential Equations, 8 (1983), 1199-1228.
doi: 10.1080/03605308308820300.
|
[53]
|
S. Senn and P. Hess, On positive solutions of a linear elliptic eigenvalue problem with Neumann boundary conditions, Math. Ann., 258 (1981/82), 459-470.
doi: 10.1007/BF01453979.
|
[54]
|
K. Taira, The Yamabe problem and nonlinear boundary value problems, J. Differential Equations, 122 (1995), 316-372.
doi: 10.1006/jdeq.1995.1151.
|
[55]
|
K. Taira, Bifurcation for nonlinear elliptic boundary value problems I, Collect. Math., 47 (1996), 207-229.
|
[56]
|
K. Taira, Boundary value problems for elliptic integro-differential operators, Math. Z., 222 (1996), 305-327.
doi: 10.1007/BF02621868.
|
[57]
|
K. Taira, Introduction to semilinear elliptic boundary value problems, Taiwanese J. Math., 2 (1998), 127-172.
doi: 10.11650/twjm/1500406929.
|
[58]
|
K. Taira, Positive solutions of diffusive logistic equations, Taiwanese J. Math., 5 (2001), 117-140.
doi: 10.11650/twjm/1500574891.
|
[59]
|
K. Taira, Diffusive logistic equations in population dynamics}, Adv. Differential Equations, 7 (2002), 237-256.
|
[60]
|
K. Taira, Introduction to diffusive logistic equations in population dynamics, Korean J. Comput. Appl. Math., 9 (2002), 289-347.
doi: 10.1007/BF03021545.
|
[61]
|
K. Taira, Logistic Dirichlet problems with discontinuous coefficients, J. Math. Pures Appl., 82 (2003), 1137-1190.
doi: 10.1016/S0021-7824(03)00058-8.
|
[62]
|
K. Taira, Diffusive logistic equations with degenerate boundary conditions, Mediterr. J. Math., 1 (2004), 315-365.
doi: 10.1007/s00009-004-0018-2.
|
[63]
|
K. Taira, Degenerate elliptic eigenvalue problems with indefinite weights, Mediterr. J. Math., 5 (2008), 133-162.
doi: 10.1007/s00009-008-0140-7.
|
[64]
|
K. Taira, Degenerate elliptic boundary value problems with asymmetric nonlinearity, J. Math. Soc. Japan, 62 (2010), 431-465.
|
[65]
|
K. Taira, Semigroups, Boundary Value Problems and Markov Processes, 2$^{nd}$ edition, Springer Monographs in Mathematics, Springer, Heidelberg, 2014.
doi: 10.1007/978-3-662-43696-7.
|
[66]
|
K. Taira, Analytic Semigroups and Semilinear Initial-Boundary Value Problems, 2$^{nd}$ edition, London Mathematical Society Lecture Note Series, 434. Cambridge University Press, Cambridge, 2016.
doi: 10.1017/CBO9781316729755.
|
[67]
|
K. Taira, The hypoelliptic Robin problem for quasilinear elliptic equations, Discrete Contin. Dyn. Syst. Ser. S, 13 (2020), 1601-1618.
doi: 10.3934/dcdss.2020091.
|
[68]
|
K. Taira, Dirichlet problems with discontinuous coefficients and Feller semigroups, Rend. Circ. Mat. Palermo, 69 (2020), 287-323.
doi: 10.1007/s12215-019-00404-5.
|
[69]
|
K. Taira, Boundary Value Problems and Markov Processes: Functional Analysis Methods for Markov Processes,
doi: 10.1007/978-3-030-48788-1.
|
[70]
|
K. Taira, Logistic Neumann problems with discontinuous coefficients, Ann. Univ. Ferrara Sez. VII Sci. Mat., 66 (2020), 409-485.
doi: 10.1007/s11565-020-00350-6.
|
[71]
|
K. Taira, Semilinear degenerate elliptic boundary value problems via the Semenov approximation, Rend. Circ. Mat. Palermo, 70 (2021), 1305-1388.
doi: 10.1007/s12215-020-00560-z.
|
[72]
|
K. Taira and K. Umezu, Bifurcation for nonlinear elliptic boundary value problems II, Tokyo J. Math., 19 (1996), 387-396.
doi: 10.3836/tjm/1270042527.
|
[73]
|
H. Triebel, Theory of Function Spaces, Monographs in Mathematics, Vol. 78, Birkhäuser-Verlag, Basel, 1983.
doi: 10.1007/978-3-0346-0416-1.
|
[74]
|
H. Triebel, Theory of Function Spaces II, Monographs in Mathematics, Vol. 84, Birkhäuser-Verlag, Basel, 1992
doi: 10.1007/978-3-0346-0419-2.
|
[75]
|
G. M. Troianiello, Elliptic Differential Equations and Obstacle Problems, The University Series in Mathematics. Plenum Press, New York, 1987.
doi: 10.1007/978-1-4899-3614-1.
|
[76]
|
J. Wloka, Partial Differential Equations, Cambridge University Press, Cambridge, 1987.
doi: 10.1017/CBO9781139171755.
|
[77]
|
K. Yosida, Functional Analysis, Classics in Mathematics. Springer-Verlag, Berlin, 1995.
doi: 10.1007/978-3-642-61859-8.
|