[1]
|
G. Acosta, F. M. Bersetche and J. P. Borthagaray, A short FE implementation for a 2d homogeneous Dirichlet problem of a fractional Laplacian, Comput. Math. Appl., 74 (2017), 784-816.
doi: 10.1016/j.camwa.2017.05.026.
|
[2]
|
G. Acosta and J. P. Borthagaray, A fractional Laplace equation: Regularity of solutions and finite element approximations, SIAM J. Numer. Anal., 55 (2017), 472-495.
doi: 10.1137/15M1033952.
|
[3]
|
G. Acosta, J. P. Borthagaray and N. Heuer, Finite element approximations of the nonhomogeneous fractional Dirichlet problem, IMA J. Numer. Anal., 39 (2019), 1471-1501.
doi: 10.1093/imanum/dry023.
|
[4]
|
M. Ainsworth and C. Glusa, Towards an efficient finite element method for the integral fractional Laplacian on polygonal domains, Contemporary Computational Mathematics–-a Celebration of the 80th Birthday of Ian Sloan, Vol. 1, 2, 17–57, Springer, Cham, 2018.
|
[5]
|
U. Biccari, M. Warma and E. Zuazua, Local elliptic regularity for the Dirichlet fractional Laplacian, Adv. Nonlinear Stud., 17 (2017), 387-409.
doi: 10.1515/ans-2017-0014.
|
[6]
|
K. Bogdan, The boundary Harnack principle for the fractional Laplacian, Studia Math., 123 (1997), 43-80.
doi: 10.4064/sm-123-1-43-80.
|
[7]
|
A. Bonito and J. E. Pasciak, Numerical approximation of fractional powers of regularly accretive operators, IMA J. Numer. Anal., 37 (2017), 1245-1273.
doi: 10.1093/imanum/drw042.
|
[8]
|
J. Burkardt, Y. Wu and Y. Zhang, A unified meshfree pseudospectral method for solving both classical and fractional PDEs, SIAM J. Sci. Comput., 43 (2021), A1389–A1411.
doi: 10.1137/20M1335959.
|
[9]
|
Q. Du, M. Gunzburger, R. B. Lehoucq and K. Zhou, Analysis and approximation of nonlocal diffusion problems with volume constraints, SIAM Rev., 54 (2012), 667-696.
doi: 10.1137/110833294.
|
[10]
|
S. Duo, H. W. van Wyk and Y. Zhang, A novel and accurate finite difference method for the fractional Laplacian and the fractional Poisson problem, J. Comput. Phys., 355 (2018), 233-252.
doi: 10.1016/j.jcp.2017.11.011.
|
[11]
|
S. Duo, H. Wang and Y. Zhang, A comparative study on nonlocal diffusion operators related to the fractional Laplacian, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 231-256.
doi: 10.3934/dcdsb.2018110.
|
[12]
|
S. Duo and Y. Zhang, Computing the ground and first excited states of the fractional Schrödinger equation in an infinite potential well, Commun. Comput. Phys., 18 (2015), 321-350.
doi: 10.4208/cicp.300414.120215a.
|
[13]
|
S. Duo and Y. Zhang, Accurate numerical methods for two and three dimensional integral fractional Laplacian with applications, Comput. Methods. Appl. Mech. Eng., 355 (2019), 639-662.
doi: 10.1016/j.cma.2019.06.016.
|
[14]
|
S. Duo and Y. Zhang, Numerical approximations for the tempered fractional Laplacian: Error analysis and applications, J. Sci. Comput., 81 (2019), 569-593.
doi: 10.1007/s10915-019-01029-7.
|
[15]
|
Y. Huang and A. Oberman, Numerical methods for the fractional Laplacian: A finite difference–quadrature approach, SIAM J. Numer. Anal., 52 (2014), 3056-3084.
doi: 10.1137/140954040.
|
[16]
|
F. Izsák and B. J. Szekeres, Models of space-fractional diffusion: A critical review, Appl. Math. Lett., 71 (2017), 38-43.
doi: 10.1016/j.aml.2017.03.006.
|
[17]
|
K. Kirkpatrick and Y. Zhang, Fractional Schrödinger dynamics and decoherence, Phys. D, 332 (2016), 41-54.
doi: 10.1016/j.physd.2016.05.015.
|
[18]
|
M. Kwaśnicki, Ten equivalent definitions of the fractional Laplace operator, Fract. Calc. Appl. Anal., 20 (2017), 7-51.
doi: 10.1515/fca-2017-0002.
|
[19]
|
N. S. Landkof, Foundations of Modern Potential Theory, Springer-Verlag, New York-Heidelberg, 1972.
|
[20]
|
A. Lischke, G. Pang, M. Gulian, F. Song, C. Glusa, X. Zheng, Z. Mao, W. Cai, M. M. Meerschaert, M. Ainsworth and G. E. Karniadakis, What is the fractional Laplacian? A comparative review with new results, J. Comput. Phys., 404 (2020), 109009.
doi: 10.1016/j.jcp.2019.109009.
|
[21]
|
X. Ros-Oton and J. Serra, Fractional Laplacian: Pohozaev identity and nonexistence results, C. R. Math. Acad. Sci. Paris, 350 (2012), 505-508.
doi: 10.1016/j.crma.2012.05.011.
|
[22]
|
J. A. Rosenfeld, S. A. Rosenfeld and W. E. Dixon, A mesh-free pseudospectral approach to estimating the fractional Laplacian via radial basis functions, J. Comput. Phys., 390 (2019), 306-322.
doi: 10.1016/j.jcp.2019.02.015.
|
[23]
|
S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science Publishers, Yverdon, 1993.
|
[24]
|
C. Sheng, J. Shen, T. Tang, L.-L. Wang and H. Yuan, Fast Fourier-like mapped Chebyshev spectral-Galerkin methods for PDEs with integral fractional Laplacian in unbounded domains, SIAM J. Numer. Anal., 58 (2020), 2435-2464.
doi: 10.1137/19M128377X.
|
[25]
|
T. Tang, L.-L. Wang, H. Yuan and T. Zhou, Rational spectral methods for PDEs involving fractional Laplacian in unbounded domains, SIAM J. Sci. Comput., 42 (2020), A585–A611.
doi: 10.1137/19M1244299.
|
[26]
|
Y. Wu and Y. Zhang, A universal solution scheme for fractional and classical PDEs, arXiv: 2102.00113, 2021.
|
[27]
|
Y. Wu and Y. Zhang, Variable-order Laplacian and its computations with meshfree methods, preprint, 2021.
|