Let
$ u'(t) + \alpha_{1}(t) A_{1}u(t) + \cdots + \alpha_{n}(t) A_{n}u(t) = 0, \quad s \leq t \leq T, \quad u(s) = x, $
and the additional conditions
$ \langle A_{1} u(t), u(t)\rangle = \varphi_{1}(t), \quad \cdots \quad, \langle A_{n} u(t), u(t)\rangle = \varphi_{n}(t), \quad s \leq t \leq T. $
Under suitable assumptions on the operators
Citation: |
[1] |
M. Akamatsu, G. Nakamura and S. Steinberg, Identification of Lamé coefficients from boundary observations, Inverse Problems, 7 (1991), 335-354.
![]() ![]() |
[2] |
K.-C. Chang, Methods in Nonlinear Analysis, Monographs in Mathematics, Springer-Verlag, Berlin and New York, 2005.
![]() ![]() |
[3] |
D. Huang, Y. Li and D. Pei, Identification of a time-dependent coefficient in heat conduction problem by new iteration method, Adv. Math. Phys., 2018 (2018), Art. ID 4918256, 7 pp.
doi: 10.1155/2018/4918256.![]() ![]() ![]() |
[4] |
M. Ivanchov, Inverse Problems for Equations of Parabolic Type, VNTL Publications, L'viv, Ukraine, 2003.
![]() ![]() |
[5] |
N. I. Ivanchov, On the inverse problem of simultaneous determination of thermal conductivity and specific heat capacity, Sib. Math. J., 35 (1994), 547-555.
doi: 10.1007/BF02104818.![]() ![]() ![]() |
[6] |
N. I. Ivanchov and N. V. Pabyrivska, On determination of two time-dependent coefficients in a parabolic equation, Sib. Math. J., 43 (2002), 323-329.
doi: 10.1023/A:1014749222472.![]() ![]() ![]() |
[7] |
T. Kato, Integration of the equation of evolution in a Banach space, J. Math. Soc. Japan, 5 (1953), 208-234.
doi: 10.2969/jmsj/00520208.![]() ![]() ![]() |
[8] |
T. Kato, Perturbation Theory for Linear Operators, Grundlehren der mathematischen Wissenschaften, 132, Springer-Verlag, Berlin and New York, 1966; 2nd ed., 1976.
![]() ![]() |
[9] |
A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Progress in nonlinear differential equations and their application Vol. 16, Birkhauser, Basel-Boston-Berlin, 1995.
doi: 10.1007/978-3-0348-9234-6.![]() ![]() ![]() |
[10] |
G. Mola, Recovering a large number of diffusion constants in a parabolic equations from energy measurements, Inverse Problems and Imaging, 12 (2018), 527-543.
doi: 10.3934/ipi.2018023.![]() ![]() ![]() |
[11] |
G. Mola, N. Okazawa and T. Yokota, Reconstruction of two constant coefficients in linear anisotropic diffusion model, Inverse Problems, 32 (2016), 115016, 22 pp.
doi: 10.1088/0266-5611/32/11/115016.![]() ![]() ![]() |
[12] |
G. Nakamura and G. Uhlmann, Identification of Lamé parameters by boundary measurements, Amer. J. Math., 115 (1993), 1161-1187.
doi: 10.2307/2375069.![]() ![]() ![]() |
[13] |
A. I. Prilepko, D. G. Orlovsky and I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, M. Dekker, New York, 2000.
![]() ![]() |
[14] |
D. Trucu, D. B. Ingham and D. Lesnic, Inverse time-dependent perfusion coefficient identification, J. Phys. Conf. Ser., 124 (2008), 012050.
![]() |
[15] |
S. J. L. van Eijndhoven and J. de Graaf, A fundamental approach to the generalized eigenvalue problem for self-adjoint operators, J. Functional Analysis, 63 (1985), 74-85.
doi: 10.1016/0022-1236(85)90098-9.![]() ![]() ![]() |