- Previous Article
- DCDS-S Home
- This Issue
-
Next Article
Local indirect stabilization of same coupled evolution systems through resolvent estimates
A quantitative strong unique continuation property of a diffusive SIS model
1. | Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221-0025, USA |
2. | College of Engineering, Huazhong Agricultural University, Wuhan 430070, China |
This article is concerned with a strong unique continuation property of solutions for a diffusive SIS (Susceptible - Infected - Susceptible, or SI) model, which belongs to a type of observability inequalities in a time interval $ [0, T] $. That is, if one can observe solution on a convex and connected bounded open set $ \omega $ in a bounded domain $ \Omega $ at time $ t = T $, then the norms of solution on $ [0,T) $ on $ \Omega $ are observable. In our discussion, boundary condition is a homogeneous Dirichlet one (hostile boundary condition).
References:
[1] |
M. E. Alexander, C. Bowman, S. M. Moghadas, R. Summers, A. B. Gumel and B. M. Sahai,
A vaccine model for transmission dynamics of influenza, SIAM J. Appl. Dyn. Syst., 3 (2004), 503-524.
doi: 10.1137/030600370. |
[2] |
M. E. Alexander, S. M. Moghadas, P. Rohani and A. R. Summers,
Modelling the effect of a booster vaccine model on disease epidemiology, J. Math. Bio., 52 (2006), 290-306.
doi: 10.1007/s00285-005-0356-0. |
[3] |
L. J. S. Allen, B. M. Bolker, Y. Lou and A. L. Nevai,
Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Disc. Contin. Dyn. Syst., 21 (2008), 1-20.
doi: 10.3934/dcds.2008.21.1. |
[4] |
J. Arino, R. Jordan and P. van der Driessch,
Quarantine in a multi-species epidemic model with spatial dynamics, Math. Biosci., 206 (2007), 46-60.
doi: 10.1016/j.mbs.2005.09.002. |
[5] |
F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Second edition. Texts in Applied Mathematics, 40. Springer, New York, 2012.
doi: 10.1007/978-1-4614-1686-9. |
[6] |
K. Deng and Y. Wu,
Dynamics of an SIS epidemic reation-diffusion model, Proc. Roy. Soc. Edinburgh Sect. A, 146 (2016), 929-946.
doi: 10.1017/S0308210515000864. |
[7] |
O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, Wiley, 2000. |
[8] |
L. Escauriaza,
Carleman inequalities and the heat operator, Duke Math. J., 104 (2000), 113-127.
doi: 10.1215/S0012-7094-00-10415-2. |
[9] |
L. Escauriaza and F. J. Fernández,
Unique continuation for parabolic operators, Ark. Mat., 41 (2003), 35-60.
doi: 10.1007/BF02384566. |
[10] |
L. Escauriaza, G. Seregin and V. Šverák,
Backward uniqueness for parabolic equations, Arch. Rational Mech. Anal., 169 (2003), 147-157.
doi: 10.1007/s00205-003-0263-8. |
[11] |
L. Escauriaza and L. Vega,
Carleman inequalities and the heat operator II, Indiana Univ. Math. J., 50 (2001), 1149-1169.
doi: 10.1512/iumj.2001.50.1937. |
[12] |
F. J. Fernández,
Unique continuation for parabolic operators II, Comm. Partial Differential Equations, 28 (2003), 1597-1604.
doi: 10.1081/PDE-120024523. |
[13] |
W. E. Fitzgibbon, M. Langlais and J. J. Morgan,
A mathematical model of the spread of feline leukemia virus (FeLV) through a highly heterogeneous spatial domain, SIAM J. Math. Anal., 33 (2001), 570-588.
doi: 10.1137/S0036141000371757. |
[14] |
W. E. Fitzgibbon, M. Langlais and J. J. Morgan,
A reaction-diffusion system modeling direct and indirect transmission of diseases, Disc. Conti. Dyna. Syst. B, 4 (2004), 893-910.
doi: 10.3934/dcdsb.2004.4.893. |
[15] |
N. Garofalo and F.-H. Lin,
Monotonicity properties of variational integrals, $A_p$ weights and unique continuation, Indiana Univ. Math. J., 35 (1986), 245-268.
doi: 10.1512/iumj.1986.35.35015. |
[16] |
G. Giodano,
Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy, Nature Medicine, 26 (2020), 855-860.
|
[17] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin-New York, 1981. |
[18] |
W. Huang, M. Han and K. Liu,
Dynamics of an SIS reaction-diffusion epidemic model for disease transmission, Math. Bio. Eng., 7 (2010), 51-66.
doi: 10.3934/mbe.2010.7.51. |
[19] |
C. E. Kenig,
Quantitative unique continuation, logarithmic convexity of Gaussian means and Hardy's uncertainty principle, Proc. Sympos. Pure Math., 79 (2008), 207-227.
doi: 10.1090/pspum/079/2500494. |
[20] |
H. Koch and D. Tataru,
Carleman estimates and unique continuation for second order parabolic equations with nonsmooth coefficients, Comm. PDE, Comm. PDE (2009), 305-366.
doi: 10.1080/03605300902740395. |
[21] |
I. Kukavica,
Quantitative uniqueness for second-order elliptic operators, Duke Math. J., 91 (1998), 225-240.
doi: 10.1215/S0012-7094-98-09111-6. |
[22] |
E. M. Landis and O. A. Oleinik,
Generalized analyticity and some related properties of solutions of elliptic and parabolic equations, Russian Mathematical Surveys, 29 (1974), 195-212.
|
[23] |
F.-H. Lin,
A uniqueness theorem for parabolic equations, Comm. Pure Appl. Math., 43 (1990), 127-136.
doi: 10.1002/cpa.3160430105. |
[24] |
Y. Lou, Several spatial epidemic models in a heterogeneous environment with applications to COVID-19, Canada-China Distinguished Lecture, Mathematics and COVID-19, June 19, 2020. |
[25] |
R. Peng,
Asymptotic profiles of the positive steady state for an SIS epidemic reaction-diffusion model, Part I, J. Diff. Eqn., 247 (2009), 1096-1119.
doi: 10.1016/j.jde.2009.05.002. |
[26] |
K. D. Phung,
Note on the cost of the approximate controllability for the heat equation with potential, J. Math. Anal. Appl., 295 (2004), 527-238.
doi: 10.1016/j.jmaa.2004.03.059. |
[27] |
K. D. Phung,
Carleman commutator approach in logarithmic convexity for parabolic equations, Math. Control Rela. Fields, 8 (2018), 899-933.
doi: 10.3934/mcrf.2018040. |
[28] |
K. D. Phung and G. Wang,
Quantitative unique continuation for the semilinear heat equation in a convex domain, J. Funct. Anal., 259 (2010), 1230-1247.
doi: 10.1016/j.jfa.2010.04.015. |
[29] |
K. D. Phung and G. Wang,
An observability estimate for parabolic equations from a measurable set in time and its applications, J. Eur. Math. Soc., 15 (2013), 681-703.
doi: 10.4171/JEMS/371. |
[30] |
P. Polacik, Parabolic Equations: Asymptotic Behavior and Dynamics on Invariant Manifolds, Handbook of Dynamical Systems 2,835–883, Hand. Differ. Equ., North-Holland, Amsterdam, 2002.
doi: 10.1016/S1874-575X(02)80037-6. |
[31] |
C.-C. Poon,
Unique continuation for parabolic equations, Comm. PDE, 21 (1996), 521-539.
doi: 10.1080/03605309608821195. |
[32] |
J. Smoller, Shock Waves and Reaction-Diffusion Equations, Grundlehren der mathematischen Wissenschaften, Springer, New York, 1994.
doi: 10.1007/978-1-4612-0873-0. |
[33] |
Y. Wu and X. Zou,
Asymptotic profiles of steady states for a diffusive SIS epidemic model with mass action infection mechanism, J. Diff. Equ., 261 (2016), 4424-4447.
doi: 10.1016/j.jde.2016.06.028. |
show all references
References:
[1] |
M. E. Alexander, C. Bowman, S. M. Moghadas, R. Summers, A. B. Gumel and B. M. Sahai,
A vaccine model for transmission dynamics of influenza, SIAM J. Appl. Dyn. Syst., 3 (2004), 503-524.
doi: 10.1137/030600370. |
[2] |
M. E. Alexander, S. M. Moghadas, P. Rohani and A. R. Summers,
Modelling the effect of a booster vaccine model on disease epidemiology, J. Math. Bio., 52 (2006), 290-306.
doi: 10.1007/s00285-005-0356-0. |
[3] |
L. J. S. Allen, B. M. Bolker, Y. Lou and A. L. Nevai,
Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Disc. Contin. Dyn. Syst., 21 (2008), 1-20.
doi: 10.3934/dcds.2008.21.1. |
[4] |
J. Arino, R. Jordan and P. van der Driessch,
Quarantine in a multi-species epidemic model with spatial dynamics, Math. Biosci., 206 (2007), 46-60.
doi: 10.1016/j.mbs.2005.09.002. |
[5] |
F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Second edition. Texts in Applied Mathematics, 40. Springer, New York, 2012.
doi: 10.1007/978-1-4614-1686-9. |
[6] |
K. Deng and Y. Wu,
Dynamics of an SIS epidemic reation-diffusion model, Proc. Roy. Soc. Edinburgh Sect. A, 146 (2016), 929-946.
doi: 10.1017/S0308210515000864. |
[7] |
O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, Wiley, 2000. |
[8] |
L. Escauriaza,
Carleman inequalities and the heat operator, Duke Math. J., 104 (2000), 113-127.
doi: 10.1215/S0012-7094-00-10415-2. |
[9] |
L. Escauriaza and F. J. Fernández,
Unique continuation for parabolic operators, Ark. Mat., 41 (2003), 35-60.
doi: 10.1007/BF02384566. |
[10] |
L. Escauriaza, G. Seregin and V. Šverák,
Backward uniqueness for parabolic equations, Arch. Rational Mech. Anal., 169 (2003), 147-157.
doi: 10.1007/s00205-003-0263-8. |
[11] |
L. Escauriaza and L. Vega,
Carleman inequalities and the heat operator II, Indiana Univ. Math. J., 50 (2001), 1149-1169.
doi: 10.1512/iumj.2001.50.1937. |
[12] |
F. J. Fernández,
Unique continuation for parabolic operators II, Comm. Partial Differential Equations, 28 (2003), 1597-1604.
doi: 10.1081/PDE-120024523. |
[13] |
W. E. Fitzgibbon, M. Langlais and J. J. Morgan,
A mathematical model of the spread of feline leukemia virus (FeLV) through a highly heterogeneous spatial domain, SIAM J. Math. Anal., 33 (2001), 570-588.
doi: 10.1137/S0036141000371757. |
[14] |
W. E. Fitzgibbon, M. Langlais and J. J. Morgan,
A reaction-diffusion system modeling direct and indirect transmission of diseases, Disc. Conti. Dyna. Syst. B, 4 (2004), 893-910.
doi: 10.3934/dcdsb.2004.4.893. |
[15] |
N. Garofalo and F.-H. Lin,
Monotonicity properties of variational integrals, $A_p$ weights and unique continuation, Indiana Univ. Math. J., 35 (1986), 245-268.
doi: 10.1512/iumj.1986.35.35015. |
[16] |
G. Giodano,
Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy, Nature Medicine, 26 (2020), 855-860.
|
[17] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin-New York, 1981. |
[18] |
W. Huang, M. Han and K. Liu,
Dynamics of an SIS reaction-diffusion epidemic model for disease transmission, Math. Bio. Eng., 7 (2010), 51-66.
doi: 10.3934/mbe.2010.7.51. |
[19] |
C. E. Kenig,
Quantitative unique continuation, logarithmic convexity of Gaussian means and Hardy's uncertainty principle, Proc. Sympos. Pure Math., 79 (2008), 207-227.
doi: 10.1090/pspum/079/2500494. |
[20] |
H. Koch and D. Tataru,
Carleman estimates and unique continuation for second order parabolic equations with nonsmooth coefficients, Comm. PDE, Comm. PDE (2009), 305-366.
doi: 10.1080/03605300902740395. |
[21] |
I. Kukavica,
Quantitative uniqueness for second-order elliptic operators, Duke Math. J., 91 (1998), 225-240.
doi: 10.1215/S0012-7094-98-09111-6. |
[22] |
E. M. Landis and O. A. Oleinik,
Generalized analyticity and some related properties of solutions of elliptic and parabolic equations, Russian Mathematical Surveys, 29 (1974), 195-212.
|
[23] |
F.-H. Lin,
A uniqueness theorem for parabolic equations, Comm. Pure Appl. Math., 43 (1990), 127-136.
doi: 10.1002/cpa.3160430105. |
[24] |
Y. Lou, Several spatial epidemic models in a heterogeneous environment with applications to COVID-19, Canada-China Distinguished Lecture, Mathematics and COVID-19, June 19, 2020. |
[25] |
R. Peng,
Asymptotic profiles of the positive steady state for an SIS epidemic reaction-diffusion model, Part I, J. Diff. Eqn., 247 (2009), 1096-1119.
doi: 10.1016/j.jde.2009.05.002. |
[26] |
K. D. Phung,
Note on the cost of the approximate controllability for the heat equation with potential, J. Math. Anal. Appl., 295 (2004), 527-238.
doi: 10.1016/j.jmaa.2004.03.059. |
[27] |
K. D. Phung,
Carleman commutator approach in logarithmic convexity for parabolic equations, Math. Control Rela. Fields, 8 (2018), 899-933.
doi: 10.3934/mcrf.2018040. |
[28] |
K. D. Phung and G. Wang,
Quantitative unique continuation for the semilinear heat equation in a convex domain, J. Funct. Anal., 259 (2010), 1230-1247.
doi: 10.1016/j.jfa.2010.04.015. |
[29] |
K. D. Phung and G. Wang,
An observability estimate for parabolic equations from a measurable set in time and its applications, J. Eur. Math. Soc., 15 (2013), 681-703.
doi: 10.4171/JEMS/371. |
[30] |
P. Polacik, Parabolic Equations: Asymptotic Behavior and Dynamics on Invariant Manifolds, Handbook of Dynamical Systems 2,835–883, Hand. Differ. Equ., North-Holland, Amsterdam, 2002.
doi: 10.1016/S1874-575X(02)80037-6. |
[31] |
C.-C. Poon,
Unique continuation for parabolic equations, Comm. PDE, 21 (1996), 521-539.
doi: 10.1080/03605309608821195. |
[32] |
J. Smoller, Shock Waves and Reaction-Diffusion Equations, Grundlehren der mathematischen Wissenschaften, Springer, New York, 1994.
doi: 10.1007/978-1-4612-0873-0. |
[33] |
Y. Wu and X. Zou,
Asymptotic profiles of steady states for a diffusive SIS epidemic model with mass action infection mechanism, J. Diff. Equ., 261 (2016), 4424-4447.
doi: 10.1016/j.jde.2016.06.028. |
[1] |
Wei Ding, Wenzhang Huang, Siroj Kansakar. Traveling wave solutions for a diffusive sis epidemic model. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1291-1304. doi: 10.3934/dcdsb.2013.18.1291 |
[2] |
Qiaoyi Hu, Zhijun Qiao. Analyticity, Gevrey regularity and unique continuation for an integrable multi-component peakon system with an arbitrary polynomial function. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6975-7000. doi: 10.3934/dcds.2016103 |
[3] |
Jing Ge, Ling Lin, Lai Zhang. A diffusive SIS epidemic model incorporating the media coverage impact in the heterogeneous environment. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2763-2776. doi: 10.3934/dcdsb.2017134 |
[4] |
Jing Ge, Zhigui Lin, Huaiping Zhu. Environmental risks in a diffusive SIS model incorporating use efficiency of the medical resource. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1469-1481. doi: 10.3934/dcdsb.2016007 |
[5] |
José G. Llorente. Mean value properties and unique continuation. Communications on Pure and Applied Analysis, 2015, 14 (1) : 185-199. doi: 10.3934/cpaa.2015.14.185 |
[6] |
Muriel Boulakia. Quantification of the unique continuation property for the nonstationary Stokes problem. Mathematical Control and Related Fields, 2016, 6 (1) : 27-52. doi: 10.3934/mcrf.2016.6.27 |
[7] |
Laurent Bourgeois. Quantification of the unique continuation property for the heat equation. Mathematical Control and Related Fields, 2017, 7 (3) : 347-367. doi: 10.3934/mcrf.2017012 |
[8] |
Zhongqi Yin. A quantitative internal unique continuation for stochastic parabolic equations. Mathematical Control and Related Fields, 2015, 5 (1) : 165-176. doi: 10.3934/mcrf.2015.5.165 |
[9] |
A. Alexandrou Himonas, Gerard Misiołek, Feride Tiǧlay. On unique continuation for the modified Euler-Poisson equations. Discrete and Continuous Dynamical Systems, 2007, 19 (3) : 515-529. doi: 10.3934/dcds.2007.19.515 |
[10] |
Gunther Uhlmann, Jenn-Nan Wang. Unique continuation property for the elasticity with general residual stress. Inverse Problems and Imaging, 2009, 3 (2) : 309-317. doi: 10.3934/ipi.2009.3.309 |
[11] |
Can Zhang. Quantitative unique continuation for the heat equation with Coulomb potentials. Mathematical Control and Related Fields, 2018, 8 (3&4) : 1097-1116. doi: 10.3934/mcrf.2018047 |
[12] |
Siyao Zhu, Jinliang Wang. Asymptotic profiles of steady states for a diffusive SIS epidemic model with spontaneous infection and a logistic source. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3323-3340. doi: 10.3934/cpaa.2020147 |
[13] |
Siyao Zhu, Jinliang Wang. Analysis of a diffusive SIS epidemic model with spontaneous infection and a linear source in spatially heterogeneous environment. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1999-2019. doi: 10.3934/dcdsb.2020013 |
[14] |
Ihyeok Seo. Carleman estimates for the Schrödinger operator and applications to unique continuation. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1013-1036. doi: 10.3934/cpaa.2012.11.1013 |
[15] |
Jan Boman. Unique continuation of microlocally analytic distributions and injectivity theorems for the ray transform. Inverse Problems and Imaging, 2010, 4 (4) : 619-630. doi: 10.3934/ipi.2010.4.619 |
[16] |
Mouhamed Moustapha Fall, Veronica Felli. Unique continuation properties for relativistic Schrödinger operators with a singular potential. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5827-5867. doi: 10.3934/dcds.2015.35.5827 |
[17] |
Roberto Triggiani. Unique continuation of boundary over-determined Stokes and Oseen eigenproblems. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 645-677. doi: 10.3934/dcdss.2009.2.645 |
[18] |
Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure and Applied Analysis, 2021, 20 (2) : 547-558. doi: 10.3934/cpaa.2020280 |
[19] |
Agnid Banerjee. A note on the unique continuation property for fully nonlinear elliptic equations. Communications on Pure and Applied Analysis, 2015, 14 (2) : 623-626. doi: 10.3934/cpaa.2015.14.623 |
[20] |
Ténan Yeo. Stochastic and deterministic SIS patch model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6173-6184. doi: 10.3934/dcdsb.2021012 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]