[1]
|
G. Acosta, F. M. Bersetche and J. P. Borthagaray, Finite element approximations for fractional evolution problems, Fractional Calculus and Applied Analysis, 22 (2019), 767-794.
doi: 10.1515/fca-2019-0042.
|
[2]
|
G. Acosta, F. M. Bersetche and J. P. Borthagaray, A short FE implementation for a 2d homogeneous Dirichlet problem of a fractional Laplacian, Computers & Mathematics with Applications, 74 (2017), 784-816.
doi: 10.1016/j.camwa.2017.05.026.
|
[3]
|
G. Acosta and J. P. Borthagaray, A fractional Laplace equation: Regularity of solutions and finite element approximations, SIAM Journal on Numerical Analysis, 55 (2017), 472-495.
doi: 10.1137/15M1033952.
|
[4]
|
M. Ali, S. Aziz and S. A. Malik, Inverse source problem for a space-time fractional diffusion equation, Fractional Calculus and Applied Analysis, 21 (2018), 844-863.
doi: 10.1515/fca-2018-0045.
|
[5]
|
O. M. Alifanov, Inverse Heat Transfer Problems, Springer Science & Business Media, 2012.
doi: 10.1007/978-3-642-76436-3.
|
[6]
|
O. M. Alifanov and E. A. Artioukhine, Extreme Methods for Solving Illposed Problems with Applications to Inverse Heat Transfer Problems, Begell House, New York, 1995.
|
[7]
|
L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, The Clarendon Press, Oxford University Press, New York, 2000.
|
[8]
|
H. Attouch, G. Buttazzo and G. Michaille, Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization, SIAM, Philadelphia, PA, 2014.
doi: 10.1137/1.9781611973488.
|
[9]
|
G. Barles, E. Chasseigne and C. Imbert, On the Dirichlet problem for second-order elliptic integro-differential equations, Indiana University Mathematics Journal, 57 (2018), 213-246.
doi: 10.1512/iumj.2008.57.3315.
|
[10]
|
M. BenSalah and M. Hassine, Inverse source problem for a diffusion equation involving the fractional spectral Laplacian, Mathematical Methods in the Applied Sciences, 44 (2021), 917-936.
doi: 10.1002/mma.6799.
|
[11]
|
A. Bonito, J. P. Borthagaray, R. H. Nochetto, E. Otàrola and A. J. Salgado, Numerical methods for fractional diffusion, Computing and Visualization in Science, 19 (2018), 19-46.
doi: 10.1007/s00791-018-0289-y.
|
[12]
|
J. P. Borthagaray, L. M. Del Pezzo and S. Martínez, Finite element approximation for the fractional eigenvalue problem, Journal of Scientific Computing, 77 (2018), 308-329.
doi: 10.1007/s10915-018-0710-1.
|
[13]
|
N. Boussetila and F. Rebbani, Optimal regularization method for ill-posed Cauchy problems, Electronic Journal of Differential Equations, 147 (2006), 1-15.
|
[14]
|
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext. Springer, New York, 2011.
doi: 10.1007/978-0-387-70914-7.
|
[15]
|
L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential equations, Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, 62 (2009), 597-638.
doi: 10.1002/cpa.20274.
|
[16]
|
X. Cao and H. Liu, Determining a fractional Helmholtz system with unknown source and medium parameter, preprint, arXiv: 1803.09538, 2018.
|
[17]
|
A. Carbotti, S. Dipierro and E. Valdinoci, Local density of solutions of time and space fractional equations, preprint, arXiv: 1810.08448, 2018.
|
[18]
|
M. Cekić, Y.-H. Lin and A. Rüland, The calderón problem for the fractional Schrödinger equation with drift, Calculus of Variations and Partial Differential Equations, 59 (2020), 46 pp.
doi: 10.1007/s00526-020-01740-6.
|
[19]
|
J. W. Daniel, The conjugate gradient method for linear and nonlinear operator equations, SIAM Journal on Numerical Analysis, 4 (1967), 10-26.
doi: 10.1137/0704002.
|
[20]
|
E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bulletin des Sciences Mathèmatiques, 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004.
|
[21]
|
S. Dipierro, X. Ros-Oton and E. Valdinoci, Nonlocal problems with Neumann boundary conditions, Revista Mathematica Iberoamericana, 33 (2017), 377-416.
doi: 10.4171/RMI/942.
|
[22]
|
S. Dipierro, O. Savin and E. Valdinoci, Local approximation of arbitrary functions by solutions of nonlocal equations, The Journal of Geometric Analysis, 29 (2019), 1428-1455.
doi: 10.1007/s12220-018-0045-z.
|
[23]
|
R. Fletcher and C. M. Reeves, Function minimization by conjugate gradients, The Computer Journal, 7 (1964), 149-154.
doi: 10.1093/comjnl/7.2.149.
|
[24]
|
J. C. Gilbert and J. Nocedal, Global convergence properties of conjugate gradient methods for optimization, SIAM Journal on Optimization, 2 (1992), 21-42.
doi: 10.1137/0802003.
|
[25]
|
C. Glusa and E. Otàrola, Error estimates for the optimal control of a parabolic fractional pde, SIAM Journal on Numerical Analysis, 59 (2021), 1140-1165.
doi: 10.1137/19M1267581.
|
[26]
|
C. W. Groetsch, The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind, Boston Pitman Publication, 1984
|
[27]
|
G. Grubb, Fractional Laplacians on domains, a development of Hörmander's theory of $\mu$-transmission pseudodifferential operators, Advances in Mathematics, 268 (2015), 478-528.
doi: 10.1016/j.aim.2014.09.018.
|
[28]
|
M. Hanke, A. Neubauer and O. Scherzer, A convergence analysis of the Landweber iteration for nonlinear ill-posed problems, Numerische Mathematik, 72 (1995), 21-37.
doi: 10.1007/s002110050158.
|
[29]
|
D. N. Hào and N. T. N. Oanh, Determination of the initial condition in parabolic equations from boundary observations, Journal of Inverse and Ill-Posed Problems, 24 (2016), 195-220.
doi: 10.1515/jiip-2015-0055.
|
[30]
|
D. N. Hào and N. T. N. Oanh, Determination of the initial condition in parabolic equations from integral observations, Inverse Problems in Science and Engineering, 25 (2017), 1138-1167.
doi: 10.1080/17415977.2016.1229778.
|
[31]
|
D. N. Hào and N. Van Duc, Stability results for backward parabolic equations with time-dependent coefficients, Inverse Problems, 27 (2011), 025003.
doi: 10.1088/0266-5611/27/2/025003.
|
[32]
|
D. N. Hào, N. Van Duc and D. Lesnic, Regularization of parabolic equations backward in time by a non-local boundary value problem method, IMA Journal of Applied Mathematics, 75 (2010), 291-315.
doi: 10.1093/imamat/hxp026.
|
[33]
|
D. N. Hào, P. X. Thanh, B. Bin-Mohsin and N. H. Cong, Stable reconstruction of the initial condition in parabolic equations from boundary observations, Computers & Mathematics with Applications, 79 (2020), 3570-3587.
doi: 10.1016/j.camwa.2020.02.019.
|
[34]
|
B. Harrach and Y.-H. Lin, Monotonicity-based inversion of the fractional Schrödinger equation I. Positive potentials, SIAM Journal on Mathematical Analysis, 51 (2019), 3092-3111.
doi: 10.1137/18M1166298.
|
[35]
|
B. Harrach and Y.-H. Lin, Monotonicity-based inversion of the fractional Schödinger equation Ⅱ. General potentials and stability, SIAM Journal on Mathematical Analysis, 52 (2020), 402-436.
doi: 10.1137/19M1251576.
|
[36]
|
M. V. Klibanov, Estimates of initial conditions of parabolic equations and inequalities via lateral Cauchy data, Inverse Problems, 22 (2006), 495-514.
doi: 10.1088/0266-5611/22/2/007.
|
[37]
|
M. V. Klibanov, Carleman estimates for the regularization of ill-posed Cauchy problems, Applied Numerical Mathematics, 94 (2015), 46-74.
doi: 10.1016/j.apnum.2015.02.003.
|
[38]
|
M. V. Klibanov, A. V. Kuzhuget and K. V. Golubnichiy, An ill-posed problem for the Black-Scholes equation for a profitable forecast of prices of stock options on real market data, Inverse Problems, 32 (2015), 015010.
doi: 10.1088/0266-5611/32/1/015010.
|
[39]
|
M. V. Klibanov and A. V. Tikhonravov, Estimates of initial conditions of parabolic equations and inequalities in infinite domains via lateral Cauchy data, Journal of Differential Equations, 237 (2007), 198-224.
doi: 10.1016/j.jde.2007.03.006.
|
[40]
|
M. Kwasnicki, Eigenvalues of the fractional laplace operator in the interval, Journal of Functional Analysis, 262 (2012), 2379-2402.
doi: 10.1016/j.jfa.2011.12.004.
|
[41]
|
M. M. Lavrentev, V. G. Romanov and S. P. Shishatskii, Ill-Posed Problems of Mathematical Physics and Analysis, Translations of Mathematical Monographs, American Mathematical Soc., 64 1986.
doi: 10.1090/mmono/064.
|
[42]
|
T. Leonori, I. Peral, A. Primo and F. Soria, Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations, Discrete & Continuous Dynamical Systems, 35 (2015), 6031-6068.
doi: 10.3934/dcds.2015.35.6031.
|
[43]
|
J. Li, M. Yamamoto and J. Zou, Conditional stability and numerical reconstruction of initial temperature, Communications on Pure & Applied Analysis, 8 (2009), 361-382.
doi: 10.3934/cpaa.2009.8.361.
|
[44]
|
J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Problèmes aux Limites, Springer, Berlin, 1971.
|
[45]
|
A. Lischke, G. Pang, M. Gulian, F. Song, C. Glusa, X. Zheng, Z. Mao, W. Cai, M. M. Meerschaert, M. Ainsworth, et al., What is the fractional laplacian? A comparative review with new results, Journal of Computational Physics, 404 (2020), 109009.
doi: 10.1016/j.jcp.2019.109009.
|
[46]
|
W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge university press, 2000.
|
[47]
|
R. Metzler, J. H. Jeon, A. G. Cherstvy and E. Barkai, Anomalous diffusion models and their properties: Non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking, Physical Chemistry Chemical Physics, 16 (2014), 24128-24164.
doi: 10.1039/C4CP03465A.
|
[48]
|
D. Molina-García, T. M. Pham, P. Paradisi, C. Manzo and G. Pagnini, Fractional kinetics emerging from ergodicity breaking in random media, Physical Review E, 94 (2016), 052147.
doi: 10.1103/PhysRevE.94.052147.
|
[49]
|
V. A. Morozov, Methods for Solving Incorrectly Posed Problems, Springer, New York, 1984.
doi: 10.1007/978-1-4612-5280-1.
|
[50]
|
N. T. N. Oanh, A splitting method for a backward parabolic equation with time-dependent coefficients, Computers & Mathematics with Applications, 65 (2013), 17-28.
doi: 10.1016/j.camwa.2012.10.005.
|
[51]
|
L. Plociniczak, Analytical studies of a time-fractional porous medium equation. derivation, approximation and applications, Communications in Nonlinear Science and Numerical Simulation, 24 (2015), 169-183.
doi: 10.1016/j.cnsns.2015.01.005.
|
[52]
|
X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, Journal de Mathèmatiques Pures et Appliquèes, 101 (2014), 275-302.
doi: 10.1016/j.matpur.2013.06.003.
|
[53]
|
X. Ros-Oton and J. Serra, The extremal solution for the fractional Laplacian, Calculus of Variations and Partial Differential Equations, 50 (2014), 723-750.
doi: 10.1007/s00526-013-0653-1.
|
[54]
|
Y. A. Rossikhin and M. V. Shitikova, Application of fractional calculus for dynamic problems of solid mechanics: Novel trends and recent results, Applied Mechanics Reviews, 63 (2010).
doi: 10.1115/1.4000563.
|
[55]
|
L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, 60 (2007), 67-112.
doi: 10.1002/cpa.20153.
|
[56]
|
L. Sun and T. Wei, Identification of the zeroth-order coefficient in a time fractional diffusion equation, Applied Numerical Mathematics, 111 (2017), 160-180.
doi: 10.1016/j.apnum.2016.09.005.
|
[57]
|
L. Tartar, An Introduction to Sobolev Spaces and Interpolation Spaces, Springer Science & Business Media, 2007.
|
[58]
|
S. Tatar and S. Ulusoy, A uniqueness result for an inverse problem in a space-time fractional diffusion equation, Electronic Journal of Differential Equations, 258 (2013), 1-9.
|
[59]
|
E. Valdinoci, From the long jump random walk to the fractional Laplacian, Boletin de la Sociedad Espanola de Matematica Aplicada. SeMA, 49 (2009), 33-44.
|
[60]
|
N. Van Thang, N. Van Duc, L. D. N. Minh and N. T. Thành, Identifying an unknown source term in a time-space fractional parabolic equation, Applied Numerical Mathematics, 166 (2021), 313-332.
doi: 10.1016/j.apnum.2021.04.016.
|
[61]
|
T. Wei, X. L. Li and Y. S. Li, An inverse time-dependent source problem for a time-fractional diffusion equation, Inverse Problems, 32 (2016), 085003.
doi: 10.1088/0266-5611/32/8/085003.
|
[62]
|
X. B. Yan and T. Wei, Inverse space-dependent source problem for a time-fractional diffusion equation by an adjoint problem approach, Journal of Inverse and Ill-posed Problems, 27 (2019), 1-16.
doi: 10.1515/jiip-2017-0091.
|
[63]
|
F. Yang, Q. Pu and X.-X. Li, The fractional Landweber method for identifying the space source term problem for time-space fractional diffusion equation, Numerical Algorithms, 87 (2021), 1229-1255.
doi: 10.1007/s11075-020-01006-4.
|
[64]
|
Y. Zhang, X. Liu, M. R. Belic, W. Zhong, Y. Zhang and M. Xiao, Propagation dynamics of a light beam in a fractional Schrödinger equation, Physical Review Letters, 115 (2015), 180403.
doi: 10.1103/PhysRevLett.115.180403.
|
[65]
|
Y. Zhang, M. M. Meerschaert and R. M. Neupauer, Backward fractional advection dispersion model for contaminant source prediction, Water Resources Research, 52 (2016), 2462-2473.
doi: 10.1002/2015WR018515.
|
[66]
|
G.-H. Zheng and T. Wei, Recovering the source and initial value simultaneously in a parabolic equation, Inverse Problems, 30 (2014), 065013.
doi: 10.1088/0266-5611/30/6/065013.
|