Article Contents
Article Contents

# Determination of the initial density in nonlocal diffusion from final time measurements

• This paper is concerned with an inverse problem related to a fractional parabolic equation. We aim to reconstruct an unknown initial condition from noise measurement of the final time solution. It is a typical nonlinear and ill-posed inverse problem related to a nonlocal operator. The considered problem is motivated by a probabilistic framework when the initial condition represents the initial probability distribution of the position of a particle. We show the identifiability of this inverse problem by proving the existence of its unique solution with respect to the final observed data. The inverse problem is formulated as a regularized optimization one minimizing a least-squares type cost functional. In this work, we have discussed some theoretical and practical issues related to the considered problem. The existence, uniqueness, and stability of the optimization problem solution have been proved. The conjugate gradient method combined with Morozov's discrepancy principle are exploited for building an iterative reconstruction process. Some numerical examples are carried out showing the accuracy and efficiency of the proposed method.

Mathematics Subject Classification: 35R30, 35L20, 65M32, 65F110, 65F22.

 Citation:

• Figure 1.  Exact (blue) and approximate solutions, computed with different values of the fractional Laplacian order $s$ in $\{0.1,\,0.2,\, 0.4,\, 0.8\}$

Figure 2.  The point cloud $\Big(\log(|Err(h_j)|),\,\log(h_j)\Big)_{1\leq j\leq 6}$ (blue dots) and their associated regression lines (red line) for each $s\in \{0.1,\,0.2,\,0.4,\, 0.8\}$

Figure 3.  Exact (blue dashed line) and reconstructed (red line) initial condition

Figure 4.  Exact (blue dashed line) and Reconstructed (red line) initial conditions

Figure 5.  Exact (blue dashed line) and obtained (red line) results

Figure 6.  Variation of $\gamma \mapsto Er(\gamma)$

Figure 7.  Variation of $\gamma \mapsto Er(\gamma)$

Figure 8.  Variation of $\gamma \mapsto Er(\gamma)$

Figure 9.  Variations of the $L^2$-error function when the fractional Laplacian order $s$ varies in the interval $(0,\,1)$

Figure 10.  Exact (black) and reconstructed initial conditions from noisy measured data, with different level of noise $\rho = 1\%$(blue), $\rho = 5\%$(green) and $\rho = 10\%$(red)

Figure 11.  Reconstruction results

Table 1.  Values of the error function $Err$ for each $s$ in $\{0.1,\,0.2,\,0.4,\, 0.8\}$ relative to the mesh step size variation

 Step size $h_j$ $Err(h_j),\, s=0.1$ $Err(h_j),\, s=0.2$ $Err(h_j),\, s=0.4$ $Err(h_j),\, s=0.8$ $h_1=h_0$ $3.61e-1$ $1.56e-1$ $1.24e-1$ $8.69e-2$ $h_2={h_0}/{2}$ $2.75e-1$ $1.13e-1$ $6.15e-2$ $4.41e-2$ $h_3={h_0}/{4}$ $1.70e-1$ $6.76e-2$ $3.11e-2$ $2.14e-2$ $h_4={h_0}/{8}$ $1.33e-1$ $4.28e-2$ $1.85e-2$ $1.13e-2$ $h_5={h_0}/{16}$ $9.59e-2$ $2.44e-2$ $9.51e-3$ $5.02e-3$ $h_6={h_0}/{32}$ $6.74e-2$ $1.36e-2$ $5.01e-3$ $2.49e-3$

Table 2.  Theoretical and numerical convergence rates values

 Fractional Laplacian order $s=0.1$ $s=0.2$ $s=0.4$ $s=0.8$ Expected rate $\eta(s)$ $0.4$ $0.7$ $0.9$ $1$ Obtained rate $\eta_{ap}(s)$ $0.4862$ $0.7124$ $0.9148$ $1.0242$

Table 3.  Values of the relative error function $err$ with respect to the mesh step $h$

 Mesh step size $h_j$ Example 1 Example 2 Example 3 $h=h_0$ $9.98e-3$ $1.03e-2$ $2.41e-2$ $h=h_0/2$ $7.61e-3$ $9.02e-3$ $8.32e-3$ $h=h_0/4$ $5.92e-3$ $8.23e-3$ $7.01e-3$ $h=h_0/8$ $5.01e-3$ $6.98e-3$ $5.71e-3$ $h=h_0/16$ $4.91e-3$ $6.12e-3$ $4.44e-3$

Table 4.  Values of the error function

 The parameter $\gamma$ The error $Er(\gamma)$ $10^{-1}$ $3.33e-1$ $10^{-2}$ $1.60e-1$ $10^{-3}$ $8.48e-2$ $10^{-4}$ $4.56e-2$ $10^{-5}$ $1.67e-2$ $10^{-6}$ $1.70e-3$ $10^{-7}$ $3.53e-4$ $10^{-8}$ $2.01e-4$ $0$ $2.31e-5$

Table 5.  Values of the error function

 The parameter $\gamma$ The error $Er(\gamma)$ $10^{-1}$ $5.10e-1$ $10^{-2}$ $1.50e-1$ $10^{-3}$ $8.31e-2$ $10^{-4}$ $5.95e-2$ $10^{-5}$ $4.66e-2$ $10^{-6}$ $4.53e-2$ $10^{-7}$ $4.48e-2$ $10^{-8}$ $4.51e-2$ $0$ $4.51e-2$

Table 6.  Values of the error function

 The parameter $\gamma$ The error $Er(\gamma)$ $10^{-1}$ $5.70e-1$ $10^{-2}$ $3.26e-1$ $10^{-3}$ $2.38e-1$ $10^{-4}$ $1.95e-1$ $10^{-5}$ $1.45e-1$ $10^{-6}$ $1.16e-1$ $10^{-7}$ $9.33e-2$ $10^{-8}$ $1.37e-1$ $0$ $1.73e-1$

Table 7.  Values of the $L^2-$error function related to the fractional Laplacian orders $s = 0.1,$ $s = 0.3$, $s = 0.6$ and $s = 0.9$

 Fractional order $s$ $0.1$ $0.3$ $0.6$ $0.9$ $L^2-$error norm $0.0371$ $0.0506$ $0.0736$ $0.0968$
•  [1] G. Acosta, F. M. Bersetche and J. P. Borthagaray, Finite element approximations for fractional evolution problems, Fractional Calculus and Applied Analysis, 22 (2019), 767-794.  doi: 10.1515/fca-2019-0042. [2] G. Acosta, F. M. Bersetche and J. P. Borthagaray, A short FE implementation for a 2d homogeneous Dirichlet problem of a fractional Laplacian, Computers & Mathematics with Applications, 74 (2017), 784-816.  doi: 10.1016/j.camwa.2017.05.026. [3] G. Acosta and J. P. Borthagaray, A fractional Laplace equation: Regularity of solutions and finite element approximations, SIAM Journal on Numerical Analysis, 55 (2017), 472-495.  doi: 10.1137/15M1033952. [4] M. Ali, S. Aziz and S. A. Malik, Inverse source problem for a space-time fractional diffusion equation, Fractional Calculus and Applied Analysis, 21 (2018), 844-863.  doi: 10.1515/fca-2018-0045. [5] O. M. Alifanov, Inverse Heat Transfer Problems, Springer Science & Business Media, 2012. doi: 10.1007/978-3-642-76436-3. [6] O. M. Alifanov and E. A. Artioukhine, Extreme Methods for Solving Illposed Problems with Applications to Inverse Heat Transfer Problems, Begell House, New York, 1995. [7] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, The Clarendon Press, Oxford University Press, New York, 2000. [8] H. Attouch, G. Buttazzo and G. Michaille, Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization, SIAM, Philadelphia, PA, 2014. doi: 10.1137/1.9781611973488. [9] G. Barles, E. Chasseigne and C. Imbert, On the Dirichlet problem for second-order elliptic integro-differential equations, Indiana University Mathematics Journal, 57 (2018), 213-246.  doi: 10.1512/iumj.2008.57.3315. [10] M. BenSalah and M. Hassine, Inverse source problem for a diffusion equation involving the fractional spectral Laplacian, Mathematical Methods in the Applied Sciences, 44 (2021), 917-936.  doi: 10.1002/mma.6799. [11] A. Bonito, J. P. Borthagaray, R. H. Nochetto, E. Otàrola and A. J. Salgado, Numerical methods for fractional diffusion, Computing and Visualization in Science, 19 (2018), 19-46.  doi: 10.1007/s00791-018-0289-y. [12] J. P. Borthagaray, L. M. Del Pezzo and S. Martínez, Finite element approximation for the fractional eigenvalue problem, Journal of Scientific Computing, 77 (2018), 308-329.  doi: 10.1007/s10915-018-0710-1. [13] N. Boussetila and F. Rebbani, Optimal regularization method for ill-posed Cauchy problems, Electronic Journal of Differential Equations, 147 (2006), 1-15. [14] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext. Springer, New York, 2011. doi: 10.1007/978-0-387-70914-7. [15] L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential equations, Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, 62 (2009), 597-638.  doi: 10.1002/cpa.20274. [16] X. Cao and H. Liu, Determining a fractional Helmholtz system with unknown source and medium parameter, preprint, arXiv: 1803.09538, 2018. [17] A. Carbotti, S. Dipierro and E. Valdinoci, Local density of solutions of time and space fractional equations, preprint, arXiv: 1810.08448, 2018. [18] M. Cekić, Y.-H. Lin and A. Rüland, The calderón problem for the fractional Schrödinger equation with drift, Calculus of Variations and Partial Differential Equations, 59 (2020), 46 pp. doi: 10.1007/s00526-020-01740-6. [19] J. W. Daniel, The conjugate gradient method for linear and nonlinear operator equations, SIAM Journal on Numerical Analysis, 4 (1967), 10-26.  doi: 10.1137/0704002. [20] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bulletin des Sciences Mathèmatiques, 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004. [21] S. Dipierro, X. Ros-Oton and E. Valdinoci, Nonlocal problems with Neumann boundary conditions, Revista Mathematica Iberoamericana, 33 (2017), 377-416.  doi: 10.4171/RMI/942. [22] S. Dipierro, O. Savin and E. Valdinoci, Local approximation of arbitrary functions by solutions of nonlocal equations, The Journal of Geometric Analysis, 29 (2019), 1428-1455.  doi: 10.1007/s12220-018-0045-z. [23] R. Fletcher and C. M. Reeves, Function minimization by conjugate gradients, The Computer Journal, 7 (1964), 149-154.  doi: 10.1093/comjnl/7.2.149. [24] J. C. Gilbert and J. Nocedal, Global convergence properties of conjugate gradient methods for optimization, SIAM Journal on Optimization, 2 (1992), 21-42.  doi: 10.1137/0802003. [25] C. Glusa and E. Otàrola, Error estimates for the optimal control of a parabolic fractional pde, SIAM Journal on Numerical Analysis, 59 (2021), 1140-1165.  doi: 10.1137/19M1267581. [26] C. W. Groetsch, The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind, Boston Pitman Publication, 1984 [27] G. Grubb, Fractional Laplacians on domains, a development of Hörmander's theory of $\mu$-transmission pseudodifferential operators, Advances in Mathematics, 268 (2015), 478-528.  doi: 10.1016/j.aim.2014.09.018. [28] M. Hanke, A. Neubauer and O. Scherzer, A convergence analysis of the Landweber iteration for nonlinear ill-posed problems, Numerische Mathematik, 72 (1995), 21-37.  doi: 10.1007/s002110050158. [29] D. N. Hào and N. T. N. Oanh, Determination of the initial condition in parabolic equations from boundary observations, Journal of Inverse and Ill-Posed Problems, 24 (2016), 195-220.  doi: 10.1515/jiip-2015-0055. [30] D. N. Hào and N. T. N. Oanh, Determination of the initial condition in parabolic equations from integral observations, Inverse Problems in Science and Engineering, 25 (2017), 1138-1167.  doi: 10.1080/17415977.2016.1229778. [31] D. N. Hào and N. Van Duc, Stability results for backward parabolic equations with time-dependent coefficients, Inverse Problems, 27 (2011), 025003.  doi: 10.1088/0266-5611/27/2/025003. [32] D. N. Hào, N. Van Duc and D. Lesnic, Regularization of parabolic equations backward in time by a non-local boundary value problem method, IMA Journal of Applied Mathematics, 75 (2010), 291-315.  doi: 10.1093/imamat/hxp026. [33] D. N. Hào, P. X. Thanh, B. Bin-Mohsin and N. H. Cong, Stable reconstruction of the initial condition in parabolic equations from boundary observations, Computers & Mathematics with Applications, 79 (2020), 3570-3587.  doi: 10.1016/j.camwa.2020.02.019. [34] B. Harrach and Y.-H. Lin, Monotonicity-based inversion of the fractional Schrödinger equation I. Positive potentials, SIAM Journal on Mathematical Analysis, 51 (2019), 3092-3111.  doi: 10.1137/18M1166298. [35] B. Harrach and Y.-H. Lin, Monotonicity-based inversion of the fractional Schödinger equation Ⅱ. General potentials and stability, SIAM Journal on Mathematical Analysis, 52 (2020), 402-436.  doi: 10.1137/19M1251576. [36] M. V. Klibanov, Estimates of initial conditions of parabolic equations and inequalities via lateral Cauchy data, Inverse Problems, 22 (2006), 495-514.  doi: 10.1088/0266-5611/22/2/007. [37] M. V. Klibanov, Carleman estimates for the regularization of ill-posed Cauchy problems, Applied Numerical Mathematics, 94 (2015), 46-74.  doi: 10.1016/j.apnum.2015.02.003. [38] M. V. Klibanov, A. V. Kuzhuget and K. V. Golubnichiy, An ill-posed problem for the Black-Scholes equation for a profitable forecast of prices of stock options on real market data, Inverse Problems, 32 (2015), 015010.  doi: 10.1088/0266-5611/32/1/015010. [39] M. V. Klibanov and A. V. Tikhonravov, Estimates of initial conditions of parabolic equations and inequalities in infinite domains via lateral Cauchy data, Journal of Differential Equations, 237 (2007), 198-224.  doi: 10.1016/j.jde.2007.03.006. [40] M. Kwasnicki, Eigenvalues of the fractional laplace operator in the interval, Journal of Functional Analysis, 262 (2012), 2379-2402.  doi: 10.1016/j.jfa.2011.12.004. [41] M. M. Lavrentev, V. G. Romanov and S. P. Shishatskii, Ill-Posed Problems of Mathematical Physics and Analysis, Translations of Mathematical Monographs, American Mathematical Soc., 64 1986. doi: 10.1090/mmono/064. [42] T. Leonori, I. Peral, A. Primo and F. Soria, Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations, Discrete & Continuous Dynamical Systems, 35 (2015), 6031-6068.  doi: 10.3934/dcds.2015.35.6031. [43] J. Li, M. Yamamoto and J. Zou, Conditional stability and numerical reconstruction of initial temperature, Communications on Pure & Applied Analysis, 8 (2009), 361-382.  doi: 10.3934/cpaa.2009.8.361. [44] J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Problèmes aux Limites, Springer, Berlin, 1971. [45] A. Lischke, G. Pang, M. Gulian, F. Song, C. Glusa, X. Zheng, Z. Mao, W. Cai, M. M. Meerschaert, M. Ainsworth, et al., What is the fractional laplacian? A comparative review with new results, Journal of Computational Physics, 404 (2020), 109009. doi: 10.1016/j.jcp.2019.109009. [46] W. McLean,  Strongly Elliptic Systems and Boundary Integral Equations, Cambridge university press, 2000. [47] R. Metzler, J. H. Jeon, A. G. Cherstvy and E. Barkai, Anomalous diffusion models and their properties: Non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking, Physical Chemistry Chemical Physics, 16 (2014), 24128-24164.  doi: 10.1039/C4CP03465A. [48] D. Molina-García, T. M. Pham, P. Paradisi, C. Manzo and G. Pagnini, Fractional kinetics emerging from ergodicity breaking in random media, Physical Review E, 94 (2016), 052147.  doi: 10.1103/PhysRevE.94.052147. [49] V. A. Morozov, Methods for Solving Incorrectly Posed Problems, Springer, New York, 1984. doi: 10.1007/978-1-4612-5280-1. [50] N. T. N. Oanh, A splitting method for a backward parabolic equation with time-dependent coefficients, Computers & Mathematics with Applications, 65 (2013), 17-28.  doi: 10.1016/j.camwa.2012.10.005. [51] L. Plociniczak, Analytical studies of a time-fractional porous medium equation. derivation, approximation and applications, Communications in Nonlinear Science and Numerical Simulation, 24 (2015), 169-183.  doi: 10.1016/j.cnsns.2015.01.005. [52] X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, Journal de Mathèmatiques Pures et Appliquèes, 101 (2014), 275-302.  doi: 10.1016/j.matpur.2013.06.003. [53] X. Ros-Oton and J. Serra, The extremal solution for the fractional Laplacian, Calculus of Variations and Partial Differential Equations, 50 (2014), 723-750.  doi: 10.1007/s00526-013-0653-1. [54] Y. A. Rossikhin and M. V. Shitikova, Application of fractional calculus for dynamic problems of solid mechanics: Novel trends and recent results, Applied Mechanics Reviews, 63 (2010).  doi: 10.1115/1.4000563. [55] L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, 60 (2007), 67-112.  doi: 10.1002/cpa.20153. [56] L. Sun and T. Wei, Identification of the zeroth-order coefficient in a time fractional diffusion equation, Applied Numerical Mathematics, 111 (2017), 160-180.  doi: 10.1016/j.apnum.2016.09.005. [57] L. Tartar, An Introduction to Sobolev Spaces and Interpolation Spaces, Springer Science & Business Media, 2007. [58] S. Tatar and S. Ulusoy, A uniqueness result for an inverse problem in a space-time fractional diffusion equation, Electronic Journal of Differential Equations, 258 (2013), 1-9. [59] E. Valdinoci, From the long jump random walk to the fractional Laplacian, Boletin de la Sociedad Espanola de Matematica Aplicada. SeMA, 49 (2009), 33-44. [60] N. Van Thang, N. Van Duc, L. D. N. Minh and N. T. Thành, Identifying an unknown source term in a time-space fractional parabolic equation, Applied Numerical Mathematics, 166 (2021), 313-332.  doi: 10.1016/j.apnum.2021.04.016. [61] T. Wei, X. L. Li and Y. S. Li, An inverse time-dependent source problem for a time-fractional diffusion equation, Inverse Problems, 32 (2016), 085003.  doi: 10.1088/0266-5611/32/8/085003. [62] X. B. Yan and T. Wei, Inverse space-dependent source problem for a time-fractional diffusion equation by an adjoint problem approach, Journal of Inverse and Ill-posed Problems, 27 (2019), 1-16.  doi: 10.1515/jiip-2017-0091. [63] F. Yang, Q. Pu and X.-X. Li, The fractional Landweber method for identifying the space source term problem for time-space fractional diffusion equation, Numerical Algorithms, 87 (2021), 1229-1255.  doi: 10.1007/s11075-020-01006-4. [64] Y. Zhang, X. Liu, M. R. Belic, W. Zhong, Y. Zhang and M. Xiao, Propagation dynamics of a light beam in a fractional Schrödinger equation, Physical Review Letters, 115 (2015), 180403.  doi: 10.1103/PhysRevLett.115.180403. [65] Y. Zhang, M. M. Meerschaert and R. M. Neupauer, Backward fractional advection dispersion model for contaminant source prediction, Water Resources Research, 52 (2016), 2462-2473.  doi: 10.1002/2015WR018515. [66] G.-H. Zheng and T. Wei, Recovering the source and initial value simultaneously in a parabolic equation, Inverse Problems, 30 (2014), 065013.  doi: 10.1088/0266-5611/30/6/065013.

Figures(11)

Tables(7)