-
Previous Article
Two phase flows of compressible viscous fluids
- DCDS-S Home
- This Issue
-
Next Article
Exponential stability of Timoshenko-Gurtin-Pipkin systems with full thermal coupling
Some rigidity results for minimal graphs over unbounded Euclidean domains
LAMFA, CNRS UMR 7352, Université de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens, France |
We prove some new rigidity results for minimal graphs over unbounded Euclidean domains. In particular we prove that a positive minimal graph over an open affine half-space, and under the homogenous Dirichlet boundary condition, must be an affine function.
References:
[1] |
F. J. Jr. Almgren,
Some interior regularity theorems for minimal surfaces and an extension of Bernstein's theorem, Ann. of Math., 84 (1966), 277-292.
doi: 10.2307/1970520. |
[2] |
S. Bernstein,
Über ein geometrisches theorem und seine anwendung auf die partiellen differentialgleichungen vom elliptischen typus, Math. Z., 26 (1927), 551-558.
doi: 10.1007/BF01475472. |
[3] |
E. Bombieri, E. De Giorgi and E. Giusti,
Minimal cones and the Bernstein problem, Invent. Math., 7 (1969), 243-268.
doi: 10.1007/BF01404309. |
[4] |
E. Bombieri, E. De Giorgi and M. Miranda,
Una maggiorazione a priori relativa alle ipersuperficie minimali non parametriche, Arch. Rat. Mech. Anal., 32 (1969), 255-267.
doi: 10.1007/BF00281503. |
[5] |
E. Bombieri and E. Giusti,
Harnack's inequality for elliptic differential equations on minimal surfaces, Invent. Math., 15 (1972), 24-46.
doi: 10.1007/BF01418640. |
[6] |
E. D. Giorgi,
Una estensione del teorema di Bernstein, Ann. Scuola Norm. Sup. Pisa, 19 (1965), 79-85.
|
[7] |
A. Farina,
A Bernstein-type result for the minimal surface equation, Ann. Scuola Norm. Sup. Pisa, 14 (2015), 1231-1237.
|
[8] |
A. Farina, A sharp Bernstein-type theorem for entire minimal graphs, Calc. Var. Partial Differential Equations, 57 (2018), Paper No. 123, 5 pp.
doi: 10.1007/s00526-018-1392-0. |
[9] |
E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Monographs in Mathematics, 80. Birkhäuser Verlag, Basel, 1984.
doi: 10.1007/978-1-4684-9486-0. |
[10] |
E. Gonzalez, U. Massari and M. Miranda,
On minimal cones, Appl. Anal., 65 (1997), 135-143.
doi: 10.1080/00036819708840554. |
[11] |
E. Hopf,
On S. Bernstein's theorem on surfaces $z(x, y)$ of nonpositive curvature, Proc. Amer. Math. Soc., 1 (1950), 80-85.
doi: 10.2307/2032438. |
[12] |
U. Massari and M. Miranda, Minimal Surfaces of Codimension One, Notas de Matemática, North Holland, Amsterdam, 1984. |
[13] |
M. Miranda,
Un principio di massimo forte per le frontiere minimali, Rend. Sem. Mat. Univ. Padova, 45 (1971), 355-366.
|
[14] |
M. Miranda,
Superfici minime illimitate, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 4 (1977), 313-322.
|
[15] |
M. P. Moschen,
Principio di massimo forte per le frontiere di misura minima, Ann. Univ. Ferrara Sez. VII (N.S.), 23 (1977), 165-168.
doi: 10.1007/BF02825995. |
[16] |
J. Moser,
On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math., 14 (1961), 577-591.
doi: 10.1002/cpa.3160140329. |
[17] |
J. Simons,
Minimal varieties in riemannian manifolds, Ann. of Math., 88 (1968), 62-105.
doi: 10.2307/1970556. |
show all references
References:
[1] |
F. J. Jr. Almgren,
Some interior regularity theorems for minimal surfaces and an extension of Bernstein's theorem, Ann. of Math., 84 (1966), 277-292.
doi: 10.2307/1970520. |
[2] |
S. Bernstein,
Über ein geometrisches theorem und seine anwendung auf die partiellen differentialgleichungen vom elliptischen typus, Math. Z., 26 (1927), 551-558.
doi: 10.1007/BF01475472. |
[3] |
E. Bombieri, E. De Giorgi and E. Giusti,
Minimal cones and the Bernstein problem, Invent. Math., 7 (1969), 243-268.
doi: 10.1007/BF01404309. |
[4] |
E. Bombieri, E. De Giorgi and M. Miranda,
Una maggiorazione a priori relativa alle ipersuperficie minimali non parametriche, Arch. Rat. Mech. Anal., 32 (1969), 255-267.
doi: 10.1007/BF00281503. |
[5] |
E. Bombieri and E. Giusti,
Harnack's inequality for elliptic differential equations on minimal surfaces, Invent. Math., 15 (1972), 24-46.
doi: 10.1007/BF01418640. |
[6] |
E. D. Giorgi,
Una estensione del teorema di Bernstein, Ann. Scuola Norm. Sup. Pisa, 19 (1965), 79-85.
|
[7] |
A. Farina,
A Bernstein-type result for the minimal surface equation, Ann. Scuola Norm. Sup. Pisa, 14 (2015), 1231-1237.
|
[8] |
A. Farina, A sharp Bernstein-type theorem for entire minimal graphs, Calc. Var. Partial Differential Equations, 57 (2018), Paper No. 123, 5 pp.
doi: 10.1007/s00526-018-1392-0. |
[9] |
E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Monographs in Mathematics, 80. Birkhäuser Verlag, Basel, 1984.
doi: 10.1007/978-1-4684-9486-0. |
[10] |
E. Gonzalez, U. Massari and M. Miranda,
On minimal cones, Appl. Anal., 65 (1997), 135-143.
doi: 10.1080/00036819708840554. |
[11] |
E. Hopf,
On S. Bernstein's theorem on surfaces $z(x, y)$ of nonpositive curvature, Proc. Amer. Math. Soc., 1 (1950), 80-85.
doi: 10.2307/2032438. |
[12] |
U. Massari and M. Miranda, Minimal Surfaces of Codimension One, Notas de Matemática, North Holland, Amsterdam, 1984. |
[13] |
M. Miranda,
Un principio di massimo forte per le frontiere minimali, Rend. Sem. Mat. Univ. Padova, 45 (1971), 355-366.
|
[14] |
M. Miranda,
Superfici minime illimitate, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 4 (1977), 313-322.
|
[15] |
M. P. Moschen,
Principio di massimo forte per le frontiere di misura minima, Ann. Univ. Ferrara Sez. VII (N.S.), 23 (1977), 165-168.
doi: 10.1007/BF02825995. |
[16] |
J. Moser,
On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math., 14 (1961), 577-591.
doi: 10.1002/cpa.3160140329. |
[17] |
J. Simons,
Minimal varieties in riemannian manifolds, Ann. of Math., 88 (1968), 62-105.
doi: 10.2307/1970556. |
[1] |
Francisco Brito, Maria Luiza Leite, Vicente de Souza Neto. Liouville's formula under the viewpoint of minimal surfaces. Communications on Pure and Applied Analysis, 2004, 3 (1) : 41-51. doi: 10.3934/cpaa.2004.3.41 |
[2] |
Jean Dolbeault, Maria J. Esteban, Gaspard Jankowiak. Onofri inequalities and rigidity results. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3059-3078. doi: 10.3934/dcds.2017131 |
[3] |
José Ginés Espín Buendía, Daniel Peralta-salas, Gabriel Soler López. Existence of minimal flows on nonorientable surfaces. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4191-4211. doi: 10.3934/dcds.2017178 |
[4] |
Karina Samvelyan, Frol Zapolsky. Rigidity of the ${{L}^{p}}$-norm of the Poisson bracket on surfaces. Electronic Research Announcements, 2017, 24: 28-37. doi: 10.3934/era.2017.24.004 |
[5] |
Eva Glasmachers, Gerhard Knieper, Carlos Ogouyandjou, Jan Philipp Schröder. Topological entropy of minimal geodesics and volume growth on surfaces. Journal of Modern Dynamics, 2014, 8 (1) : 75-91. doi: 10.3934/jmd.2014.8.75 |
[6] |
Francesco Maggi, Salvatore Stuvard, Antonello Scardicchio. Soap films with gravity and almost-minimal surfaces. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 6877-6912. doi: 10.3934/dcds.2019236 |
[7] |
Rafael López. Plateau-rayleigh instability of singular minimal surfaces. Communications on Pure and Applied Analysis, 2022, 21 (9) : 2981-2997. doi: 10.3934/cpaa.2022086 |
[8] |
Bassam Fayad, Raphaël Krikorian. Rigidity results for quasiperiodic SL(2, R)-cocycles. Journal of Modern Dynamics, 2009, 3 (4) : 479-510. doi: 10.3934/jmd.2009.3.479 |
[9] |
Erik I. Verriest. Generalizations of Naismith's problem: Minimal transit time between two points in a heterogenous terrian. Conference Publications, 2011, 2011 (Special) : 1413-1422. doi: 10.3934/proc.2011.2011.1413 |
[10] |
Plamen Stefanov and Gunther Uhlmann. Recent progress on the boundary rigidity problem. Electronic Research Announcements, 2005, 11: 64-70. |
[11] |
Qinglong Zhou, Yongchao Zhang. Analytic results for the linear stability of the equilibrium point in Robe's restricted elliptic three-body problem. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1763-1787. doi: 10.3934/dcds.2017074 |
[12] |
Luis F. López, Yannick Sire. Rigidity results for nonlocal phase transitions in the Heisenberg group $\mathbb{H}$. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : 2639-2656. doi: 10.3934/dcds.2014.34.2639 |
[13] |
Michael Khanevsky. Hofer's length spectrum of symplectic surfaces. Journal of Modern Dynamics, 2015, 9: 219-235. doi: 10.3934/jmd.2015.9.219 |
[14] |
François Ledrappier. Erratum: On Omri Sarig's work on the dynamics of surfaces. Journal of Modern Dynamics, 2015, 9: 355-355. doi: 10.3934/jmd.2015.9.355 |
[15] |
François Ledrappier. On Omri Sarig's work on the dynamics on surfaces. Journal of Modern Dynamics, 2014, 8 (1) : 15-24. doi: 10.3934/jmd.2014.8.15 |
[16] |
Filippo Morabito. Singly periodic free boundary minimal surfaces in a solid cylinder of $\mathbb{R}^3$. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 4987-5001. doi: 10.3934/dcds.2015.35.4987 |
[17] |
Yajing Zhang, Xinfu Chen, Jianghao Hao, Xin Lai, Cong Qin. Dynamics of spike in a Keller-Segel's minimal chemotaxis model. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 1109-1127. doi: 10.3934/dcds.2017046 |
[18] |
Matilde Martínez, Shigenori Matsumoto, Alberto Verjovsky. Horocycle flows for laminations by hyperbolic Riemann surfaces and Hedlund's theorem. Journal of Modern Dynamics, 2016, 10: 113-134. doi: 10.3934/jmd.2016.10.113 |
[19] |
Evgeny Galakhov. Some nonexistence results for quasilinear PDE's. Communications on Pure and Applied Analysis, 2007, 6 (1) : 141-161. doi: 10.3934/cpaa.2007.6.141 |
[20] |
Nazih Abderrazzak Gadhi, Khadija Hamdaoui. Optimality results for a specific fractional problem. Journal of Industrial and Management Optimization, 2022, 18 (1) : 367-373. doi: 10.3934/jimo.2020157 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]