In this paper, we consider the number of limit cycles of the Li$ \acute{e} $nard system of the form $ \dot{x} = y, \ \dot{y} = -x(x^2+bx-1)+\varepsilon f_{m}(x)y $, where $ b>0 $, $ f_{m}(x) = \sum_{i = 0}^m a_{i}x^{i} $ is a polynomial of $ x $ with degree not greater than $ m $ and $ 0<\varepsilon \ll 1 $. By studying the number of isolated zeros of the corresponding Abelian integral $ I(h) = \oint_{L_{h}}f_{m}(x)ydx, $ we obtain the upper bound of the number of limit cycles that bifurcated from periodic orbits of the unperturbed system for $ \varepsilon = 0 $.
Citation: |
[1] |
V. I. Arnol'd, Loss of stability of self-induced oscillations near resonance, and versal deformations of equivariant vector fields, Funct. Anal. Appl., 11 (1977), 1-10.
![]() ![]() |
[2] |
T. R. Blows and N. G. Lloyd, The number of small-amplitude limit cycles of li$\acute{e}$nard equations, Math. Proc. Camb. Phil. Soc., 95 (1984), 359-366.
doi: 10.1017/S0305004100061636.![]() ![]() ![]() |
[3] |
R. Bogdanov, Versal deformation of a singularity of a vector feld on the plane in the case of zero eigenvalues, Sel. Math. Sov., 1 (1981), 389-421.
![]() |
[4] |
C. Christopher and S. Lynch, Small-amplitude limit cycle bifurcations for li$\acute{e}$nard systems with quadratic or cubic damping or restoring forces, Nonlinearity, 12 (1999), 1099-1112.
doi: 10.1088/0951-7715/12/4/321.![]() ![]() ![]() |
[5] |
F. Dumortier and C. Li, Perturbation from an elliptic Hamiltonian of degree four-IV Figure eight-loop, J. Differ. Equ., 188 (2003), 512-554.
doi: 10.1016/S0022-0396(02)00111-0.![]() ![]() ![]() |
[6] |
E. Horozov and I. Iliev, Linear estimate for the number of zeros of Abelian integrals with cubic Hamiltonians, Nonlinearity, 11 (1998), 1521-1537.
doi: 10.1088/0951-7715/11/6/006.![]() ![]() ![]() |
[7] |
C. Li, Abelian integrals and limit cycles, Qual. Theory Dyn. Syst., 11 (2012), 111-128.
doi: 10.1007/s12346-011-0051-z.![]() ![]() ![]() |
[8] |
J. Li, Hilbert's 16th problem and bifurcations of planar polynomial vector fields, Int. J. Bifurcat. Chaos, 13 (2003), 47-106.
doi: 10.1142/S0218127403006352.![]() ![]() ![]() |
[9] |
W. Li, Y. Zhao, C. Li and Z. Zhang, Abelian integrals for quadratic centers having almost all their orbits formed by quartics, Nonlinearity, 15 (2002), 863-885.
doi: 10.1088/0951-7715/15/3/321.![]() ![]() ![]() |
[10] |
J. Llibre, A. C. Mereu and M. A. Teixeira, Limit cycles of the generalized polynomial li$\acute{e}$nard differential equations, Math. Proc. Camb. Phil. Soc., 148 (2010), 363-383.
doi: 10.1017/S0305004109990193.![]() ![]() ![]() |
[11] |
J. Yang, M. Han and V. G. Romanovski, Limit cycle bifurcations of some li$\acute{e}$nard systems, J. Math. Anal. Appl., 366 (2010), 242-255.
doi: 10.1016/j.jmaa.2009.12.035.![]() ![]() ![]() |
[12] |
Y. Zhao and Z. Zhang, Linear estimate of the number of zeros of abelian integrals for a kind of quartic Hamiltonians, J. Differ. Equ., 155 (1999), 73-88.
doi: 10.1006/jdeq.1998.3581.![]() ![]() ![]() |
Phase portraits of Eq. (3) on the