[1]
|
E. Benoît, J.-L. Callot, F. Diener and M. Diener, Chasse au canard, Collect. Math., 32 (1981), 37-119.
|
[2]
|
P. Carter, Spike-adding canard explosion in a class of square-wave bursters, J. Nonlinear Sci., 30 (2020), 2613-2669.
doi: 10.1007/s00332-020-09631-y.
|
[3]
|
P. Carter, J. D. M. Rademacher and B. Sandstede, Pulse replication and accumulation of eigenvalues, SIAM J. Math. Anal., 53 (2021), 3520-3576.
doi: 10.1137/20M1340113.
|
[4]
|
P. Carter and B. Sandstede, Fast pulses with oscillatory tails in the FitzHugh–Nagumo system, SIAM J. Math. Anal., 47 (2015), 3393-3441.
doi: 10.1137/140999177.
|
[5]
|
P. Carter and B. Sandstede, Unpeeling a homoclinic banana in the FitzHugh–Nagumo system, SIAM J. Appl. Dyn. Syst., 17 (2018), 236-349.
doi: 10.1137/16M1080707.
|
[6]
|
P. Carter and A. Scheel, Wave train selection by invasion fronts in the FitzHugh–Nagumo equation, Nonlinearity, 31 (2018), 5536-5572.
doi: 10.1088/1361-6544/aae1db.
|
[7]
|
A. R. Champneys, Homoclinic orbits in the dynamics of articulated pipes conveying fluid, Nonlinearity, 4 (1991), 747-774.
doi: 10.1088/0951-7715/4/3/007.
|
[8]
|
A. R. Champneys, V. Kirk, E. Knobloch, B. E. Oldeman and J. Sneyd, When shil'nikov meets hopf in excitable systems, SIAM J. Appl. Dyn. Syst., 6 (2007), 663-693.
doi: 10.1137/070682654.
|
[9]
|
M. Desroches, J. Guckenheimer, B. Krauskopf, C. Kuehn, H. M. Osinga and M. Wechselberger, Mixed-mode oscillations with multiple time scales, SIAM Rev., 54 (2012), 211-288.
doi: 10.1137/100791233.
|
[10]
|
M. Desroches, T. J. Kaper and M. Krupa, Mixed-mode bursting oscillations: Dynamics created by a slow passage through spike-adding canard explosion in a square-wave burster, Chaos: An Interdisciplinary Journal of Nonlinear Science, 23 (2013), 046106, 13 pp.
doi: 10.1063/1.4827026.
|
[11]
|
E. Doedel, B. Oldeman et al., Auto-07p: Continuation and bifurcation software for ordinary differential equations, 2020, Latest version at https://github.com/auto-07p.
|
[12]
|
F. Dumortier and R. Roussarie, Canard cycles and center manifolds, Mem. Amer. Math. Soc., 121 (1996), no. 577,100 pp.
doi: 10.1090/memo/0577.
|
[13]
|
C. Fall, E. Marland, J. Wagner and J. Tyson, Computational Cell Biology, Springer-Verlag, New York, 2002.
|
[14]
|
R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophysical journal, 1 (1961), 445-466.
doi: 10.1016/S0006-3495(61)86902-6.
|
[15]
|
P. Gaspard, R. Kapral and G. Nicolis, Bifurcation phenomena near homoclinic systems; A two-parameter analysis, J. Stat. Phys., 35 (1984), 697-727.
doi: 10.1007/BF01010829.
|
[16]
|
P. Glendinning and C. Sparrow, Local and global behaviour near homoclinic orbits, J. Stat. Phys., 35 (1984), 645-696.
doi: 10.1007/BF01010828.
|
[17]
|
J. Guckenheimer and C. Kuehn, Homoclinic orbits of the FitzHugh–Nagumo equation: The singular-limit, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 851-872.
doi: 10.3934/dcdss.2009.2.851.
|
[18]
|
J. Guckenheimer and C. Kuehn, Homoclinic orbits of the FitzHugh–Nagumo equation: Bifurcations in the full system, SIAM J. Appl. Dyn. Syst., 9 (2010), 138-153.
doi: 10.1137/090758404.
|
[19]
|
S. P. Hastings, On the existence of homoclinic and periodic orbits for the FitzHugh-Nagumo equations, Quart. J. Math. Oxford Ser., 27 (1976), 123-134.
doi: 10.1093/qmath/27.1.123.
|
[20]
|
S. P. Hastings, Single and multiple pulse waves for the FitzHugh–Nagumo equations, SIAM J. Appl. Math., 42 (1982), 247-260.
doi: 10.1137/0142018.
|
[21]
|
C. Jones, N. Kopell and R. Langer, Construction of the FitzHugh-Nagumo pulse using differential forms, in Patterns and Dynamics in Reactive Media, Springer, 1991,101–115.
doi: 10.1007/978-1-4612-3206-3_7.
|
[22]
|
T. Kaper and C. Jones, A primer on the exchange lemma for fast-slow systems, vol. 122 of The IMA Volumes in Mathematics and its Applications, 65–87, Springer, New York, 2001.
doi: 10.1007/978-1-4613-0117-2_3.
|
[23]
|
J. Keener and J. Sneyd, Mathematical Physiology, 2nd edition, Springer-Verlag, New York, 2009.
|
[24]
|
M. Krupa, B. Sandstede and P. Szmolyan, Fast and slow waves in the FitzHugh–Nagumo equation, J. Differential Equations, 133 (1997), 49-97.
doi: 10.1006/jdeq.1996.3198.
|
[25]
|
M. Krupa and P. Szmolyan, Extending geometric singular perturbation theory to nonhyperbolic points–-fold and canard points in two dimensions, SIAM J. Math. Anal., 33 (2001), 286-314.
doi: 10.1137/S0036141099360919.
|
[26]
|
M. Krupa and P. Szmolyan, Relaxation oscillation and canard explosion, J. Differential Equations, 174 (2001), 312-368.
doi: 10.1006/jdeq.2000.3929.
|
[27]
|
C. Kuehn, Multiple Time Series Dynamical Systems, Springer-Verlag, Heidelberg, 2015, Applied Mathematical Sciences, vol. 191.
|
[28]
|
Y. Kuznetsov and A. Panfilov, Stochastic waves in the FitzHugh-Nagumo system, 1981, Research Computing Centre, USSR Academy of Sciences, Pushchino. In Russian.
|
[29]
|
D. Linaro, A. Champneys, M. Desroches and M. Storace, Codimension-two homoclinic bifurcations underlying spike adding in the Hindmarsh–Rose burster, SIAM J. Appl. Dyn. Syst., 11 (2012), 939-962.
doi: 10.1137/110848931.
|
[30]
|
J. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proceedings of the IRE, 50 (1962), 2061-2070.
doi: 10.1109/JRPROC.1962.288235.
|
[31]
|
H. Osinga and K. Tsaneva-Atanasova, Dynamics of plateau bursting depending on the location of its equilibrium, Journal of Neuroendocrinology, 22 (2010), 1301-1314.
doi: 10.1111/j.1365-2826.2010.02083.x.
|
[32]
|
J. D. M. Rademacher, Homoclinic Bifurcation from Heteroclinic Cycles with Periodic Orbits and Tracefiring of Pulses, Ph.D. thesis, University of Minnesota, 2004, http://www.math.uni-bremen.de/~jdmr/pub/dissMay7Web.pdf.
|
[33]
|
L. Shilnikov, On the generation of a periodic motion from trajectories doubly asymptotic to an equilibrium state of saddle type, Math. USSR Sb., 6 (1968), 427-438.
|
[34]
|
L. Shilnikov, A. Shilnikov, D. Turaev and L. Chua, Method of Qualitative Theory of Nonlinear Dynamics: Part II, World Scientific, Singapore, 2001.
doi: 10.1142/9789812798558_0001.
|
[35]
|
C. Soto-Trevino, Geometric Methods for Periodic Orbits in Singularly Perturbed Systems, Ph.D. Thesis, Boston University, 1998.
|
[36]
|
P. Szmolyan and M. Wechselberger, Canards in $\mathbb{R}^3$, J. Differential Equations, 177 (2001), 419-453.
doi: 10.1006/jdeq.2001.4001.
|
[37]
|
D. Terman, Chaotic spikes arising from a model of bursting in excitable membranes, SIAM J. Appl. Math., 51 (1991), 1418-1450.
doi: 10.1137/0151071.
|
[38]
|
M. Wechselberger, Existence and bifurcation of canards in $\mathbb{R}^3$ in the case of a folded node, SIAM J. Appl. Dyn. Syst., 4 (2005), 101-139.
doi: 10.1137/030601995.
|