[1]

E. Benoît, J.L. Callot, F. Diener and M. Diener, Chasse au canard, Collect. Math., 32 (1981), 37119.

[2]

P. Carter, Spikeadding canard explosion in a class of squarewave bursters, J. Nonlinear Sci., 30 (2020), 26132669.
doi: 10.1007/s0033202009631y.

[3]

P. Carter, J. D. M. Rademacher and B. Sandstede, Pulse replication and accumulation of eigenvalues, SIAM J. Math. Anal., 53 (2021), 35203576.
doi: 10.1137/20M1340113.

[4]

P. Carter and B. Sandstede, Fast pulses with oscillatory tails in the FitzHugh–Nagumo system, SIAM J. Math. Anal., 47 (2015), 33933441.
doi: 10.1137/140999177.

[5]

P. Carter and B. Sandstede, Unpeeling a homoclinic banana in the FitzHugh–Nagumo system, SIAM J. Appl. Dyn. Syst., 17 (2018), 236349.
doi: 10.1137/16M1080707.

[6]

P. Carter and A. Scheel, Wave train selection by invasion fronts in the FitzHugh–Nagumo equation, Nonlinearity, 31 (2018), 55365572.
doi: 10.1088/13616544/aae1db.

[7]

A. R. Champneys, Homoclinic orbits in the dynamics of articulated pipes conveying fluid, Nonlinearity, 4 (1991), 747774.
doi: 10.1088/09517715/4/3/007.

[8]

A. R. Champneys, V. Kirk, E. Knobloch, B. E. Oldeman and J. Sneyd, When shil'nikov meets hopf in excitable systems, SIAM J. Appl. Dyn. Syst., 6 (2007), 663693.
doi: 10.1137/070682654.

[9]

M. Desroches, J. Guckenheimer, B. Krauskopf, C. Kuehn, H. M. Osinga and M. Wechselberger, Mixedmode oscillations with multiple time scales, SIAM Rev., 54 (2012), 211288.
doi: 10.1137/100791233.

[10]

M. Desroches, T. J. Kaper and M. Krupa, Mixedmode bursting oscillations: Dynamics created by a slow passage through spikeadding canard explosion in a squarewave burster, Chaos: An Interdisciplinary Journal of Nonlinear Science, 23 (2013), 046106, 13 pp.
doi: 10.1063/1.4827026.

[11]

E. Doedel, B. Oldeman et al., Auto07p: Continuation and bifurcation software for ordinary differential equations, 2020, Latest version at https://github.com/auto07p.

[12]

F. Dumortier and R. Roussarie, Canard cycles and center manifolds, Mem. Amer. Math. Soc., 121 (1996), no. 577,100 pp.
doi: 10.1090/memo/0577.

[13]

C. Fall, E. Marland, J. Wagner and J. Tyson, Computational Cell Biology, SpringerVerlag, New York, 2002.

[14]

R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophysical journal, 1 (1961), 445466.
doi: 10.1016/S00063495(61)869026.

[15]

P. Gaspard, R. Kapral and G. Nicolis, Bifurcation phenomena near homoclinic systems; A twoparameter analysis, J. Stat. Phys., 35 (1984), 697727.
doi: 10.1007/BF01010829.

[16]

P. Glendinning and C. Sparrow, Local and global behaviour near homoclinic orbits, J. Stat. Phys., 35 (1984), 645696.
doi: 10.1007/BF01010828.

[17]

J. Guckenheimer and C. Kuehn, Homoclinic orbits of the FitzHugh–Nagumo equation: The singularlimit, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 851872.
doi: 10.3934/dcdss.2009.2.851.

[18]

J. Guckenheimer and C. Kuehn, Homoclinic orbits of the FitzHugh–Nagumo equation: Bifurcations in the full system, SIAM J. Appl. Dyn. Syst., 9 (2010), 138153.
doi: 10.1137/090758404.

[19]

S. P. Hastings, On the existence of homoclinic and periodic orbits for the FitzHughNagumo equations, Quart. J. Math. Oxford Ser., 27 (1976), 123134.
doi: 10.1093/qmath/27.1.123.

[20]

S. P. Hastings, Single and multiple pulse waves for the FitzHugh–Nagumo equations, SIAM J. Appl. Math., 42 (1982), 247260.
doi: 10.1137/0142018.

[21]

C. Jones, N. Kopell and R. Langer, Construction of the FitzHughNagumo pulse using differential forms, in Patterns and Dynamics in Reactive Media, Springer, 1991,101–115.
doi: 10.1007/9781461232063_7.

[22]

T. Kaper and C. Jones, A primer on the exchange lemma for fastslow systems, vol. 122 of The IMA Volumes in Mathematics and its Applications, 65–87, Springer, New York, 2001.
doi: 10.1007/9781461301172_3.

[23]

J. Keener and J. Sneyd, Mathematical Physiology, 2nd edition, SpringerVerlag, New York, 2009.

[24]

M. Krupa, B. Sandstede and P. Szmolyan, Fast and slow waves in the FitzHugh–Nagumo equation, J. Differential Equations, 133 (1997), 4997.
doi: 10.1006/jdeq.1996.3198.

[25]

M. Krupa and P. Szmolyan, Extending geometric singular perturbation theory to nonhyperbolic points–fold and canard points in two dimensions, SIAM J. Math. Anal., 33 (2001), 286314.
doi: 10.1137/S0036141099360919.

[26]

M. Krupa and P. Szmolyan, Relaxation oscillation and canard explosion, J. Differential Equations, 174 (2001), 312368.
doi: 10.1006/jdeq.2000.3929.

[27]

C. Kuehn, Multiple Time Series Dynamical Systems, SpringerVerlag, Heidelberg, 2015, Applied Mathematical Sciences, vol. 191.

[28]

Y. Kuznetsov and A. Panfilov, Stochastic waves in the FitzHughNagumo system, 1981, Research Computing Centre, USSR Academy of Sciences, Pushchino. In Russian.

[29]

D. Linaro, A. Champneys, M. Desroches and M. Storace, Codimensiontwo homoclinic bifurcations underlying spike adding in the Hindmarsh–Rose burster, SIAM J. Appl. Dyn. Syst., 11 (2012), 939962.
doi: 10.1137/110848931.

[30]

J. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proceedings of the IRE, 50 (1962), 20612070.
doi: 10.1109/JRPROC.1962.288235.

[31]

H. Osinga and K. TsanevaAtanasova, Dynamics of plateau bursting depending on the location of its equilibrium, Journal of Neuroendocrinology, 22 (2010), 13011314.
doi: 10.1111/j.13652826.2010.02083.x.

[32]

J. D. M. Rademacher, Homoclinic Bifurcation from Heteroclinic Cycles with Periodic Orbits and Tracefiring of Pulses, Ph.D. thesis, University of Minnesota, 2004, http://www.math.unibremen.de/~jdmr/pub/dissMay7Web.pdf.

[33]

L. Shilnikov, On the generation of a periodic motion from trajectories doubly asymptotic to an equilibrium state of saddle type, Math. USSR Sb., 6 (1968), 427438.

[34]

L. Shilnikov, A. Shilnikov, D. Turaev and L. Chua, Method of Qualitative Theory of Nonlinear Dynamics: Part II, World Scientific, Singapore, 2001.
doi: 10.1142/9789812798558_0001.

[35]

C. SotoTrevino, Geometric Methods for Periodic Orbits in Singularly Perturbed Systems, Ph.D. Thesis, Boston University, 1998.

[36]

P. Szmolyan and M. Wechselberger, Canards in $\mathbb{R}^3$, J. Differential Equations, 177 (2001), 419453.
doi: 10.1006/jdeq.2001.4001.

[37]

D. Terman, Chaotic spikes arising from a model of bursting in excitable membranes, SIAM J. Appl. Math., 51 (1991), 14181450.
doi: 10.1137/0151071.

[38]

M. Wechselberger, Existence and bifurcation of canards in $\mathbb{R}^3$ in the case of a folded node, SIAM J. Appl. Dyn. Syst., 4 (2005), 101139.
doi: 10.1137/030601995.
