[1]
|
W. Aigner, S. Miksch, H. Schumann and C. Tominski, Visualization of Time-Oriented Data, Springer Science & Business Media, 2011.
doi: 10.1007/978-0-85729-079-3.
|
[2]
|
A. Andrisani, R. M. Mininni, F. Mazzia, G. Settanni, A. Iurino, S. Tangaro, A. Tateo and R. Bellotti, Applications of PDEs inpainting to magnetic particle imaging and corneal topography, Opuscula Mathematica, 39 (2019), 453-482.
doi: 10.7494/OpMath.2019.39.4.453.
|
[3]
|
T. Andrysiak, L. Saganowski and W. Mazurczyk, Network anomaly detection for railway critical infrastructure based on autoregressive fractional integrated moving average, EURASIP Journal on Wireless Communications and Networking, 245 (2016), 1-14.
doi: 10.1186/s13638-016-0744-8.
|
[4]
|
R. Armina, A. M. Zain, N. A. Ali and R. Sallehuddin, A review on missing value estimation using imputation algorithm, In Journal of Physics: Conference Series, 892 (2017).
doi: 10.1088/1742-6596/892/1/012004.
|
[5]
|
N. Benlagha and L. Noureddine, A time-varying copula approach for modelling dependency: New evidence from commodity and S & P500 markets, Journal of Multinational Financial Management, 892 (2016).
|
[6]
|
G. E. Box, G. M. Jenkins, G. C. Reinsel and G. M. Ljung, Time Series Analysis: Forecasting and Control, John Wiley & Sons, 2016.
|
[7]
|
M. M. Breunig, H. P. Kriegel, R. T. Ng and J. Sander, LOF: identifying density-based local outliers, Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, 29 (2000), 93-104.
doi: 10.1145/342009.335388.
|
[8]
|
F. Calabrò, A. Falini, M. L. Sampoli and A. Sestini, Efficient quadrature rules based on spline quasi-interpolation for application to IGA-BEMs, Journal of Computational and Applied Mathematics, 338 (2018), 153-167.
doi: 10.1016/j.cam.2018.02.005.
|
[9]
|
V. Chandola, A. Banerjee and V. Kumar, Anomaly detection: A survey, ACM Computing Surveys (CSUR), 41 (2009), 1-58.
|
[10]
|
M. P. Clements, P. H. Franses and N. R. Swanson, Forecasting economic and financial time-series with non-linear models, International Journal of Forecasting, 20 (2004), 169-183.
doi: 10.1016/j.ijforecast.2003.10.004.
|
[11]
|
W. P. Cleveland and G. C. Tiao, Decomposition of seasonal time series: A model for the census X-11 program, Journal of the American Statistical Association, 71 (1976), 581-587.
doi: 10.1080/01621459.1976.10481532.
|
[12]
|
W. S. Cleveland, Robust locally weighted regression and smoothing scatterplots, Journal of the American Statistical Association, 74 (1979), 829-836.
doi: 10.1080/01621459.1979.10481038.
|
[13]
|
J. Contreras, R. Espinola, F. J. Nogales and A. J. Conejo, ARIMA models to predict next-day electricity prices, IEEE Transactions on Power Systems, 18 (2003), 1014-1020.
|
[14]
|
C. de Boor, Splines as Linear Combinations of B-Splines, Lorentz, G.G., et al. (eds.) Approximation Theory Ⅱ, pp. 1–47. Academic Press, San Diego, 1976.
|
[15]
|
C. de Boor, A Practical Guide to Splines, revised edn., Springer, Berlin, 2001.
|
[16]
|
C. de Boor and M. G. Fix, Spline approximation by quasi-interpolants, J. Approx. Theory, 8 (1973), 19-54.
doi: 10.1016/0021-9045(73)90029-4.
|
[17]
|
A. M. De Livera, R. J. Hyndman and R. D. Snyder, Forecasting time series with complex seasonal patterns using exponential smoothing, Journal of the American Statistical Association, 106 (2011), 1513-1527.
doi: 10.1198/jasa.2011.tm09771.
|
[18]
|
F. Durante and C. Sempi, Principles of Copula Theory, 1$^{st}$ edition, Chapman and Hall/CRC, New York, 2015.
|
[19]
|
M. Ester, H. P. Kriegel, J. Sander and X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, In Kdd, 96 (1996), 226-231.
|
[20]
|
A. Falini, C. Giannelli, T. Kanduč, M. L. Sampoli and A. Sestini, An adaptive IgA-BEM with hierarchical B-splines based on quasi-interpolation quadrature schemes, Internat. J. Numer. Methods Engrg., 117 (2019), 1038-1058.
doi: 10.1002/nme.5990.
|
[21]
|
A. Falini, G. Castellano, C. Tamborrino, F. Mazzia, R. M. Mininni, A. Appice and D. Malerba, Saliency detection for hyperspectral images via sparse-non negative-matrix-factorization and novel distance measures, In 2020 IEEE Conference on Evolving and Adaptive Intelligent Systems, (EAIS) (2020), 1–8.
doi: 10.1109/EAIS48028.2020.9122749.
|
[22]
|
A. Falini and T. Kanduč, A study on spline quasi-interpolation based quadrature rules for the isogeometric Galerkin BEM, In Advanced Methods for Geometric Modeling and Numerical Simulation, Springer, Cham., (2019), 99–125.
|
[23]
|
A. Falini, C. Tamborrino, G. Castellano, F. Mazzia, R. M. Mininni, A. Appice and D. Malerba, Novel reconstruction errors for saliency detection in hyperspectral images, In International Conference on Machine Learning, Optimization, and Data Science, Springer, Cham. (2020), 113–124.
doi: 10.1007/978-3-030-64583-0_12.
|
[24]
|
T. Fawcett, An introduction to ROC analysis, Pattern Recognition Letters, 27 (2006), 861-874.
doi: 10.1016/j.patrec.2005.10.010.
|
[25]
|
T. C. Fu, A review on time series data mining, Engineering Applications of Artificial Intelligence, 24 (2011), 164-181.
doi: 10.1016/j.engappai.2010.09.007.
|
[26]
|
M. Gavrilov, D. Anguelov, P. Indyk and R. Motwani, Mining the stock market (extended abstract) which measure is best?, In Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2000,487–496.
|
[27]
|
P. J. Green and B. W. Silverman, Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach, Monographs on Statistics and Applied Probability, 58. Chapman & Hall, London, 1994.
doi: 10.1201/b15710.
|
[28]
|
H. S. Guirguis and G. A. Felder, Further advances in forecasting day-ahead electricity prices using time series models, KIEE International Transactions on Power Engineering, 4 (2004), 159-166.
|
[29]
|
J. J. Guo and P. B. Luh, Selecting input factors for clusters of Gaussian radial basis function networks to improve market clearing price prediction, IEEE Transactions on Power Systems, 18 (2003), 665-672.
|
[30]
|
W. Härdle, H. Lütkepohl and R. Chen, A review of nonparametric time series analysis, International Statistical Review, 65 (1997), 49-72.
|
[31]
|
T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learning, Springer Series in Statistics. Springer, New York, 2009.
doi: 10.1007/978-0-387-84858-7.
|
[32]
|
J. L. Hodges, Jr., The significance probability of the Smirnov two-sample test, Ark. Mat., 3 (1958), 469-486.
doi: 10.1007/BF02589501.
|
[33]
|
R. J. Hyndman and G. Athanasopoulos, Forecasting: Principles and Practice. OTexts, 2018.
|
[34]
|
H. Joe, Dependence Modeling with Copulas, Monographs on Statistics and Applied Probability, 134. CRC Press, Boca Raton, FL, 2015.
|
[35]
|
R. H. Jones, Maximum likelihood fitting of ARMA models to time series with missing observations, Technometrics, 22 (1980), 389-395.
doi: 10.1080/00401706.1980.10486171.
|
[36]
|
P. S. Kalekar, Time series forecasting using holt-winters exponential smoothing, Kanwal Rekhi School of Information Technology, 4329008 (2004), 1-13.
|
[37]
|
M. G. Kendall, Rank Correlation Methods, Griffin, 1948.
|
[38]
|
W. Kim, B.-J. Choi, E.-K. Hong, S.-K. Kim and D. Lee, A taxonomy of dirty data, Data Min. Knowl. Discov., 7 (2003), 81-99.
doi: 10.1023/A:1021564703268.
|
[39]
|
F. T. Liu, K. M. Ting and Z. H. Zhou, Isolation forest, In 2008 Eighth IEEE International Conference on Data Mining, (2008), 413–422.
doi: 10.1109/ICDM.2008.17.
|
[40]
|
F. T. Liu, K. M. Ting and Z.-H. Zhou, Isolation-based anomaly detection, ACM Transactions on Knowledge Discovery from Data, 6 (2012), 1-39.
doi: 10.1145/2133360.2133363.
|
[41]
|
T. Lyche and L. L. Schumaker, Local spline approximation, J. Approx. Theory, 15 (1975), 294-325.
doi: 10.1016/0021-9045(75)90091-X.
|
[42]
|
F. Mazzia and A. Sestini, The BS class of Hermite spline quasi-interpolants on nonuniform knot distributions, BIT Numerical Mathematics, 49 (2009), 611-628.
doi: 10.1007/s10543-009-0229-9.
|
[43]
|
F. Mazzia and A. Sestini, Quadrature formulas descending from BS Hermite spline quasi-interpolation, J. Comput. Appl. Math., 236 (2012), 4105-4118.
doi: 10.1016/j.cam.2012.03.015.
|
[44]
|
F. Mazzia, A. Sestini and D. Trigiante, B-spline multistep methods and their continuous extensions, SIAM J. Numer. Anal., 44 (2006), 1954-1973.
doi: 10.1137/040614748.
|
[45]
|
F. Mazzia, A. Sestini and D. Trigiante, BS linear multistep methods on non-uniform meshes, JNAIAM J. Numer. Anal. Ind. Appl. Math., 1 (2006), 131-144.
|
[46]
|
F. Mazzia, A. Sestini and D. Trigiante, The continous extension of the B-spline linear multistep methods for BVPs on non-uniform meshes, Appl. Numer. Meth., 59 (2009), 723-738.
doi: 10.1016/j.apnum.2008.03.036.
|
[47]
|
S. Moritz and T. Bartz-Beielstein, ImputeTS: Time series missing value imputation in R, R. J., 9 (2017), 207-218.
doi: 10.32614/RJ-2017-009.
|
[48]
|
F. Muharemi, D. Logofătu and F. Leon, Review on general techniques and packages for data imputation in R on a real world dataset, In International Conference on Computational Collective Intelligence, 2018,386–395, Springer, Cham.
doi: 10.1007/978-3-319-98446-9_36.
|
[49]
|
K. R. Müller, A. J. Smola, G. Rätsch, B. Schölkopf, J. Kohlmorgen and V. Vapnik, Predicting time series with support vector machines, In International Conference on Artificial Neural Networks, 1997. Springer, Berlin, Heidelberg.
|
[50]
|
R. B. Nelsen, An Introduction to Copulas, 2$^{nd}$ edition, Springer Publishing Company, 2006.
|
[51]
|
T. Niimura, H.-S. Ko and K. Ozawa, A day-ahead electricity price prediction based on a fuzzy-neuro autoregressive model in a deregulated electricity market, Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02, 2 (2002), 1362-1366.
doi: 10.1109/IJCNN.2002.1007714.
|
[52]
|
P. Omenzetter and J. M. W. Brownjohn, Application of time series analysis for bridge monitoring, Smart Materials and Structures, 15 (2006), 129.
doi: 10.1088/0964-1726/15/1/041.
|
[53]
|
A. J. Pattom, Modelling asymmetric exchange rate dependence, Internat. Econom. Rev., 10 (2006), 527-556.
doi: 10.1111/j.1468-2354.2006.00387.x.
|
[54]
|
B. Ramosaj, L. Amro and M. Pauly, A cautionary tale on using imputation methods for inference in matched-pairs design, Bioinformatics, 36 (2020), 3099-3106.
doi: 10.1093/bioinformatics/btaa082.
|
[55]
|
F. J. Rohlf and R. R. Sokal, Statistical Tables, Macmillan, 1995.
|
[56]
|
P. Sablonnière, Positive spline operators and orthogonal splines, J. Approx. Theory, 52 (1988), 28-42.
doi: 10.1016/0021-9045(88)90035-4.
|
[57]
|
P. Sablonnière, Univariate spline quasi-interpolants and applications to numerical analysis, Rend. Semin. Mat. Univ. (Torino), 63 (2005), 211-222.
|
[58]
|
P. Sablonnière and D. Sbibih, Integral spline operators exact on polynomials, Approx. Theory Appl., 10 (1994), 56-73.
|
[59]
|
X. Shao, Self-normalization for time series: A review of recent developments, J. Amer. Statist. Assoc., 110 (2015), 1797-1817.
doi: 10.1080/01621459.2015.1050493.
|
[60]
|
R. H. Shumway and D. S. Stoffer, Time Series Analysis and its Applications, Fourth edition, Springer, Cham, 2017.
doi: 10.1007/978-3-319-52452-8.
|
[61]
|
M. Sklar, Fonctions de Répartition à $n$ Dimensions et Leurs Marges, Publ. Inst. Statist. Univ. Paris, 8 (1959), 229–231.
|
[62]
|
M. K. P. So and C. Y. T. Yeung, Vine-copula GARCH model with dynamic conditional dependence, Comput. Statist. Data Anal., 76 (2014), 655-671.
doi: 10.1016/j.csda.2013.08.008.
|
[63]
|
M. Teng, Anomaly detection on time series, 2010 IEEE International Conference on Progress in Informatics and Computing, 1 (2010), 603-608.
|
[64]
|
H. Theil, Economic Forecasts and Policy, North-Holland Pub. Co., 1961.
|
[65]
|
H. Theil, Applied Economic Forecasting, North-Holland Pub. Co., 1971.
|
[66]
|
G. S. Watson, Smooth regression analysis, Sankhyā: The Indian Journal of Statistics, Series A, 26 (1964), 359-372.
|
[67]
|
C. Zhang, D. Song, Y. Chen, X. Feng, C. Lumezanu, W. Cheng, J. Ni, B. Zong, H. Chen and N. V. Chawla, A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data, Proceedings of the AAAI Conference on Artificial Intelligence, 33 (2019), 1409-1416.
doi: 10.1609/aaai.v33i01.33011409.
|