
-
Previous Article
Exponential stability of Timoshenko-Gurtin-Pipkin systems with full thermal coupling
- DCDS-S Home
- This Issue
-
Next Article
Well-posedness and optimal control for a Cahn–Hilliard–Oono system with control in the mass term
Thermoelasticity with antidissipation
Politecnico di Milano - Dipartimento di Matematica, Via Bonardi 9, 20133 Milano, Italy |
$ \begin{cases} u_{tt} + A u -\gamma u_t = p A^{\alpha} \theta \\ \theta_{t} + \kappa A^{\beta} \theta = - p A^{\alpha} u_t \end{cases} $ |
$ A $ |
$ \gamma, \kappa>0 $ |
$ \alpha $ |
$ \beta $ |
$ 0 $ |
$ 1 $ |
$ \gamma $ |
$ \kappa $ |
$ (\alpha, \beta) $ |
$ t\to\infty $ |
References:
[1] |
F. Alabau-Boussouira, Z. Wang and L. Yu,
A one-step optimal energy decay formula for indirectly nonlinearly damped hyperbolic systems coupled by velocities, ESAIM Control Optim. Calc. Var., 23 (2017), 721-749.
doi: 10.1051/cocv/2016011. |
[2] |
M. S. Alves, C. Buriol, M. V. Ferreira, J. E. Muñoz Rivera, M. Sepúlveda and O. Vera,
Asymptotic behaviour for the vibrations modeled by the standard linear solid model with a thermal effect, J. Math. Anal. Appl., 399 (2013), 472-479.
doi: 10.1016/j.jmaa.2012.10.019. |
[3] |
F. Ammar-Khodja, A. Bader and A. Benabdallah,
Dynamic stabilization of systems via decoupling techniques, ESAIM Control Optim. Calc. Var., 4 (1999), 577-593.
doi: 10.1051/cocv:1999123. |
[4] |
K. Ammari and S. Nicaise,
Stabilization of a transmission wave/plate equation, J. Differential Equations, 249 (2010), 707-727.
doi: 10.1016/j.jde.2010.03.007. |
[5] |
W. Arendt and C. J. K. Batty,
Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc., 306 (1988), 837-852.
doi: 10.1090/S0002-9947-1988-0933321-3. |
[6] |
G. Avalos and I. Lasiecka,
Exponential stability of a thermoelastic system without mechanical dissipation, Rend. Istit. Mat. Univ. Trieste, 28 (1997), 1-28.
|
[7] |
G. Avalos and I. Lasiecka,
The strong stability of a semigroup arising from a coupled hyperbolic/parabolic system, Semigroup Forum, 57 (1998), 278-292.
doi: 10.1007/PL00005977. |
[8] |
J. A. Burns, Z. Liu and S. M. Zheng,
On the energy decay of a linear thermoelastic bar, J. Math. Anal. Appl., 179 (1993), 574-591.
doi: 10.1006/jmaa.1993.1370. |
[9] |
M. Conti, L. Liverani and V. Pata,
A note on the energy transfer in coupled differential systems, Commun. Pure Appl. Anal., 20 (2021), 1821-1831.
doi: 10.3934/cpaa.2021042. |
[10] |
M. Conti, L. Liverani and V. Pata,
The MGT-Fourier model in the supercritical case, J. Differential Equations, 301 (2021), 543-567.
doi: 10.1016/j.jde.2021.08.030. |
[11] |
M. Conti, V. Pata, M. Pellicer and R. Quintanilla,
On the analyticity of the MGT-viscoelastic plate with heat conduction, J. Differential Equations, 269 (2020), 7862-7880.
doi: 10.1016/j.jde.2020.05.043. |
[12] |
M. Conti, V. Pata and R. Quintanilla,
Thermoelasticity of Moore-Gibson-Thompson type with history dependence in the temperature, Asymptot. Anal., 120 (2020), 1-21.
doi: 10.3233/ASY-191576. |
[13] |
F. Dell'Oro and V. Pata,
On the Moore-Gibson-Thompson equation and its relation to linear viscoelasticity, Appl. Math. Optim., 76 (2017), 641-655.
doi: 10.1007/s00245-016-9365-1. |
[14] |
J. Hao and Z. Liu,
Stability of an abstract system of coupled hyperbolic and parabolic equations, Z. Angew. Math. Phys., 64 (2013), 1145-1159.
doi: 10.1007/s00033-012-0274-0. |
[15] |
J. Hao, Z. Liu and J. Yong,
Regularity analysis for an abstract system of coupled hyperbolic and parabolic equations, J. Differential Equations, 259 (2015), 4763-4798.
doi: 10.1016/j.jde.2015.06.010. |
[16] |
J. U. Kim,
On the energy decay of a linear thermoelastic bar and plate, SIAM J. Math. Anal., 23 (1992), 889-899.
doi: 10.1137/0523047. |
[17] |
I. Lasiecka, Global solvability of Moore-Gibson-Thompson equation with memory arising in nonlinear acoustics, J. Evol. Equ., 17 (2017), 411-441.
doi: 10.1007/s00028-016-0353-3. |
[18] |
Z.-Y. Liu and M. Renardy,
A note on the equation of a thermoelastic plate, Appl. Math. Lett., 8 (1995), 1-6.
doi: 10.1016/0893-9659(95)00020-Q. |
[19] |
Z. Liu and S. M. Zheng,
Exponential energy decay of the Euler-Bernoulli beam with shear/thermal diffusion, J. Math. Anal. Appl., 196 (1995), 467-478.
doi: 10.1006/jmaa.1995.1420. |
[20] |
R. Marchand, T. McDevitt and R. Triggiani,
An abstract semigroup approach to the third-order Moore-Gibson-Thompson partial differential equation arising in high-intensity ultrasound: Structural decomposition, spectral analysis, exponential stability, Math. Methods Appl. Sci., 35 (2012), 1896-1929.
doi: 10.1002/mma.1576. |
[21] |
F. K. Moore and W. E. Gibson,
Propagation of weak disturbances in a gas subject to relaxation effects, J. Aerospace Sci., 27 (1960), 117-127.
doi: 10.2514/8.8418. |
[22] |
J. E. Muñoz Rivera and R. Racke,
Magneto-thermo-elasticity large-time behavior for linear systems, Adv. Differ. Equ., 6 (2001), 359-384.
|
[23] |
J. E. Muñoz Rivera and R. Racke,
Large solutions and smoothing properties for nonlinear thermoelastic systems, J. Differential Equations, 127 (1996), 454-483.
doi: 10.1006/jdeq.1996.0078. |
[24] |
V. Pata,
Exponential stability in linear viscoelasticity, Quart. Appl. Math., 64 (2006), 499-513.
doi: 10.1090/S0033-569X-06-01010-4. |
[25] |
V. Pata,
Stability and exponential stability in linear viscoelasticity, Milan J. Math., 77 (2009), 333-360.
doi: 10.1007/s00032-009-0098-3. |
[26] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[27] |
W. Rudin, Functional Analysis, McGraw-Hill, New York-Düsseldorf-Johannesburg, 1973. |
[28] |
D. L. Russell,
A general framework for the study of indirect damping mechanisms in elastic systems, J. Math. Anal. Appl., 173 (1993), 339-358.
doi: 10.1006/jmaa.1993.1071. |
[29] |
P. A. Thompson, Compressible-Fluid Dynamics, McGraw-Hill, New York, 1972. |
[30] |
R. Triggiani and J. Zhang,
Heat-viscoelastic plate interaction: Analyticity, spectral analysis, exponential decay, Evol. Equ. Control Theory, 7 (2018), 153-182.
doi: 10.3934/eect.2018008. |
[31] |
J. Zabczyk, Mathematical Control Theory. An Introduction, Reprint of the 1995 edition, Birkhäuser, Boston, 2008.
doi: 10.1007/978-0-8176-4733-9. |
show all references
References:
[1] |
F. Alabau-Boussouira, Z. Wang and L. Yu,
A one-step optimal energy decay formula for indirectly nonlinearly damped hyperbolic systems coupled by velocities, ESAIM Control Optim. Calc. Var., 23 (2017), 721-749.
doi: 10.1051/cocv/2016011. |
[2] |
M. S. Alves, C. Buriol, M. V. Ferreira, J. E. Muñoz Rivera, M. Sepúlveda and O. Vera,
Asymptotic behaviour for the vibrations modeled by the standard linear solid model with a thermal effect, J. Math. Anal. Appl., 399 (2013), 472-479.
doi: 10.1016/j.jmaa.2012.10.019. |
[3] |
F. Ammar-Khodja, A. Bader and A. Benabdallah,
Dynamic stabilization of systems via decoupling techniques, ESAIM Control Optim. Calc. Var., 4 (1999), 577-593.
doi: 10.1051/cocv:1999123. |
[4] |
K. Ammari and S. Nicaise,
Stabilization of a transmission wave/plate equation, J. Differential Equations, 249 (2010), 707-727.
doi: 10.1016/j.jde.2010.03.007. |
[5] |
W. Arendt and C. J. K. Batty,
Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc., 306 (1988), 837-852.
doi: 10.1090/S0002-9947-1988-0933321-3. |
[6] |
G. Avalos and I. Lasiecka,
Exponential stability of a thermoelastic system without mechanical dissipation, Rend. Istit. Mat. Univ. Trieste, 28 (1997), 1-28.
|
[7] |
G. Avalos and I. Lasiecka,
The strong stability of a semigroup arising from a coupled hyperbolic/parabolic system, Semigroup Forum, 57 (1998), 278-292.
doi: 10.1007/PL00005977. |
[8] |
J. A. Burns, Z. Liu and S. M. Zheng,
On the energy decay of a linear thermoelastic bar, J. Math. Anal. Appl., 179 (1993), 574-591.
doi: 10.1006/jmaa.1993.1370. |
[9] |
M. Conti, L. Liverani and V. Pata,
A note on the energy transfer in coupled differential systems, Commun. Pure Appl. Anal., 20 (2021), 1821-1831.
doi: 10.3934/cpaa.2021042. |
[10] |
M. Conti, L. Liverani and V. Pata,
The MGT-Fourier model in the supercritical case, J. Differential Equations, 301 (2021), 543-567.
doi: 10.1016/j.jde.2021.08.030. |
[11] |
M. Conti, V. Pata, M. Pellicer and R. Quintanilla,
On the analyticity of the MGT-viscoelastic plate with heat conduction, J. Differential Equations, 269 (2020), 7862-7880.
doi: 10.1016/j.jde.2020.05.043. |
[12] |
M. Conti, V. Pata and R. Quintanilla,
Thermoelasticity of Moore-Gibson-Thompson type with history dependence in the temperature, Asymptot. Anal., 120 (2020), 1-21.
doi: 10.3233/ASY-191576. |
[13] |
F. Dell'Oro and V. Pata,
On the Moore-Gibson-Thompson equation and its relation to linear viscoelasticity, Appl. Math. Optim., 76 (2017), 641-655.
doi: 10.1007/s00245-016-9365-1. |
[14] |
J. Hao and Z. Liu,
Stability of an abstract system of coupled hyperbolic and parabolic equations, Z. Angew. Math. Phys., 64 (2013), 1145-1159.
doi: 10.1007/s00033-012-0274-0. |
[15] |
J. Hao, Z. Liu and J. Yong,
Regularity analysis for an abstract system of coupled hyperbolic and parabolic equations, J. Differential Equations, 259 (2015), 4763-4798.
doi: 10.1016/j.jde.2015.06.010. |
[16] |
J. U. Kim,
On the energy decay of a linear thermoelastic bar and plate, SIAM J. Math. Anal., 23 (1992), 889-899.
doi: 10.1137/0523047. |
[17] |
I. Lasiecka, Global solvability of Moore-Gibson-Thompson equation with memory arising in nonlinear acoustics, J. Evol. Equ., 17 (2017), 411-441.
doi: 10.1007/s00028-016-0353-3. |
[18] |
Z.-Y. Liu and M. Renardy,
A note on the equation of a thermoelastic plate, Appl. Math. Lett., 8 (1995), 1-6.
doi: 10.1016/0893-9659(95)00020-Q. |
[19] |
Z. Liu and S. M. Zheng,
Exponential energy decay of the Euler-Bernoulli beam with shear/thermal diffusion, J. Math. Anal. Appl., 196 (1995), 467-478.
doi: 10.1006/jmaa.1995.1420. |
[20] |
R. Marchand, T. McDevitt and R. Triggiani,
An abstract semigroup approach to the third-order Moore-Gibson-Thompson partial differential equation arising in high-intensity ultrasound: Structural decomposition, spectral analysis, exponential stability, Math. Methods Appl. Sci., 35 (2012), 1896-1929.
doi: 10.1002/mma.1576. |
[21] |
F. K. Moore and W. E. Gibson,
Propagation of weak disturbances in a gas subject to relaxation effects, J. Aerospace Sci., 27 (1960), 117-127.
doi: 10.2514/8.8418. |
[22] |
J. E. Muñoz Rivera and R. Racke,
Magneto-thermo-elasticity large-time behavior for linear systems, Adv. Differ. Equ., 6 (2001), 359-384.
|
[23] |
J. E. Muñoz Rivera and R. Racke,
Large solutions and smoothing properties for nonlinear thermoelastic systems, J. Differential Equations, 127 (1996), 454-483.
doi: 10.1006/jdeq.1996.0078. |
[24] |
V. Pata,
Exponential stability in linear viscoelasticity, Quart. Appl. Math., 64 (2006), 499-513.
doi: 10.1090/S0033-569X-06-01010-4. |
[25] |
V. Pata,
Stability and exponential stability in linear viscoelasticity, Milan J. Math., 77 (2009), 333-360.
doi: 10.1007/s00032-009-0098-3. |
[26] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[27] |
W. Rudin, Functional Analysis, McGraw-Hill, New York-Düsseldorf-Johannesburg, 1973. |
[28] |
D. L. Russell,
A general framework for the study of indirect damping mechanisms in elastic systems, J. Math. Anal. Appl., 173 (1993), 339-358.
doi: 10.1006/jmaa.1993.1071. |
[29] |
P. A. Thompson, Compressible-Fluid Dynamics, McGraw-Hill, New York, 1972. |
[30] |
R. Triggiani and J. Zhang,
Heat-viscoelastic plate interaction: Analyticity, spectral analysis, exponential decay, Evol. Equ. Control Theory, 7 (2018), 153-182.
doi: 10.3934/eect.2018008. |
[31] |
J. Zabczyk, Mathematical Control Theory. An Introduction, Reprint of the 1995 edition, Birkhäuser, Boston, 2008.
doi: 10.1007/978-0-8176-4733-9. |
[1] |
Pedro Roberto de Lima, Hugo D. Fernández Sare. General condition for exponential stability of thermoelastic Bresse systems with Cattaneo's law. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3575-3596. doi: 10.3934/cpaa.2020156 |
[2] |
Aymen Jbalia. On a logarithmic stability estimate for an inverse heat conduction problem. Mathematical Control and Related Fields, 2019, 9 (2) : 277-287. doi: 10.3934/mcrf.2019014 |
[3] |
Qiong Zhang. Exponential stability of a joint-leg-beam system with memory damping. Mathematical Control and Related Fields, 2015, 5 (2) : 321-333. doi: 10.3934/mcrf.2015.5.321 |
[4] |
Vo Anh Khoa, Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence, blow-up and exponential decay of solutions for a porous-elastic system with damping and source terms. Evolution Equations and Control Theory, 2019, 8 (2) : 359-395. doi: 10.3934/eect.2019019 |
[5] |
Lei Wang, Zhong-Jie Han, Gen-Qi Xu. Exponential-stability and super-stability of a thermoelastic system of type II with boundary damping. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2733-2750. doi: 10.3934/dcdsb.2015.20.2733 |
[6] |
Corrado Mascia. Stability analysis for linear heat conduction with memory kernels described by Gamma functions. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3569-3584. doi: 10.3934/dcds.2015.35.3569 |
[7] |
Luis Barreira, Claudia Valls. Delay equations and nonuniform exponential stability. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 219-223. doi: 10.3934/dcdss.2008.1.219 |
[8] |
Adriana Flores de Almeida, Marcelo Moreira Cavalcanti, Janaina Pedroso Zanchetta. Exponential stability for the coupled Klein-Gordon-Schrödinger equations with locally distributed damping. Evolution Equations and Control Theory, 2019, 8 (4) : 847-865. doi: 10.3934/eect.2019041 |
[9] |
Yi Cheng, Zhihui Dong, Donal O' Regan. Exponential stability of axially moving Kirchhoff-beam systems with nonlinear boundary damping and disturbance. Discrete and Continuous Dynamical Systems - B, 2022, 27 (8) : 4331-4346. doi: 10.3934/dcdsb.2021230 |
[10] |
Yuming Qin, T. F. Ma, M. M. Cavalcanti, D. Andrade. Exponential stability in $H^4$ for the Navier--Stokes equations of compressible and heat conductive fluid. Communications on Pure and Applied Analysis, 2005, 4 (3) : 635-664. doi: 10.3934/cpaa.2005.4.635 |
[11] |
Ramon Quintanilla, Reinhard Racke. Stability in thermoelasticity of type III. Discrete and Continuous Dynamical Systems - B, 2003, 3 (3) : 383-400. doi: 10.3934/dcdsb.2003.3.383 |
[12] |
Jason S. Howell, Irena Lasiecka, Justin T. Webster. Quasi-stability and exponential attractors for a non-gradient system---applications to piston-theoretic plates with internal damping. Evolution Equations and Control Theory, 2016, 5 (4) : 567-603. doi: 10.3934/eect.2016020 |
[13] |
Leif Arkeryd, Raffaele Esposito, Rossana Marra, Anne Nouri. Exponential stability of the solutions to the Boltzmann equation for the Benard problem. Kinetic and Related Models, 2012, 5 (4) : 673-695. doi: 10.3934/krm.2012.5.673 |
[14] |
Sigurdur Freyr Hafstein. A constructive converse Lyapunov theorem on exponential stability. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 657-678. doi: 10.3934/dcds.2004.10.657 |
[15] |
Hichem Kasri, Amar Heminna. Exponential stability of a coupled system with Wentzell conditions. Evolution Equations and Control Theory, 2016, 5 (2) : 235-250. doi: 10.3934/eect.2016003 |
[16] |
Litan Yan, Wenyi Pei, Zhenzhong Zhang. Exponential stability of SDEs driven by fBm with Markovian switching. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6467-6483. doi: 10.3934/dcds.2019280 |
[17] |
István Györi, Ferenc Hartung. Exponential stability of a state-dependent delay system. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 773-791. doi: 10.3934/dcds.2007.18.773 |
[18] |
Akram Ben Aissa. Well-posedness and direct internal stability of coupled non-degenrate Kirchhoff system via heat conduction. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 983-993. doi: 10.3934/dcdss.2021106 |
[19] |
Irena Lasiecka, Roberto Triggiani. Heat--structure interaction with viscoelastic damping: Analyticity with sharp analytic sector, exponential decay, fractional powers. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1515-1543. doi: 10.3934/cpaa.2016001 |
[20] |
José M. Arrieta, Raúl Ferreira, Arturo de Pablo, Julio D. Rossi. Stability of the blow-up time and the blow-up set under perturbations. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 43-61. doi: 10.3934/dcds.2010.26.43 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]