
-
Previous Article
Novel criteria for robust stability of Cohen-Grossberg neural networks with multiple time delays
- DCDS-S Home
- This Issue
-
Next Article
Spline based Hermite quasi-interpolation for univariate time series
Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.
Readers can access Online First articles via the “Online First” tab for the selected journal.
Dynamics of patchy vegetation patterns in the two-dimensional generalized Klausmeier model
1. | The Institute for Computational and Experimental Research in Mathematics, Brown University, Providence, RI, 02903, USA |
2. | Department of Mathematics, The University of British Columbia, Vancouver, BC, V6T 1Z2, Canada |
We study the dynamical and steady-state behavior of self-organized spatially localized patches or "spots" of vegetation for the Klausmeier reaction-diffusion (RD) system of spatial ecology that models the interaction between surface water and vegetation biomass on a 2-D spatial landscape with a spatially uniform terrain slope gradient. In this context, we develop and implement a hybrid asymptotic-numerical theory to analyze the existence, linear stability, and slow dynamics of multi-spot quasi-equilibrium spot patterns for the Klausmeier model in the singularly perturbed limit where the biomass diffusivity is much smaller than that of the water resource. From the resulting differential-algebraic (DAE) system of ODEs for the spot locations, one primary focus is to analyze how the constant slope gradient influences the steady-state spot configuration. Our second primary focus is to examine bifurcations in quasi-equilibrium multi-spot patterns that are triggered by a slowly varying time-dependent rainfall rate. Many full numerical simulations of the Klausmeier RD system are performed both to illustrate the effect of the terrain slope and rainfall rate on localized spot patterns, as well as to validate the predictions from our hybrid asymptotic-numerical theory.
References:
[1] |
S. M. Baer, T. Erneux and J. Rinzel,
The slow passage through a Hopf bifurcation: Delay, memory effects, and resonance, SIAM J. Appl. Math., 49 (1989), 55-71.
doi: 10.1137/0149003. |
[2] |
R. Bastiaansen, P. Carter and A. Doelman,
Stable planar vegetation stripe patterns on sloped terrain in dryland ecosystems, Nonlinearity, 32 (2019), 2759-2814.
doi: 10.1088/1361-6544/ab1767. |
[3] |
R. Bastiaansen and A. Doelman,
The dynamics of disappearing pulses in a singularly perturbed reaction–diffusion system with parameters that vary in time and space, Physica D, 388 (2019), 45-72.
doi: 10.1016/j.physd.2018.09.003. |
[4] |
R. Bastiaansen, A. Doelman, M. B. Eppinga and M. Rietkerk,
The effect of climate change on the resilience of ecosystems with adaptive spatial pattern formation, Ecol. Lett., 23 (2020), 414-429.
doi: 10.1111/ele.13449. |
[5] |
R. Bastiaansen, O. Jaïbi, V. Deblauwe, M. B. Eppinga, K. Siteur, E. Siero, S. Mermoz, A. Bouvet, A. Doelman and M. Rietkerk,
Multistability of model and real dryland ecosystems through spatial self-organization, Proc. Natl. Acad. Sci. U.S.A., 115 (2018), 11256-11261.
doi: 10.1073/pnas.1804771115. |
[6] |
W. Chen and M. J. Ward,
The stability and dynamics of localized spot patterns in the two-dimensional Gray-Scott model, SIAM J. Appl. Dyn. Sys., 10 (2011), 582-666.
doi: 10.1137/09077357X. |
[7] |
Y. Chen, T. Kolokolnikov, J. Tzou and C. Gai,
Patterned vegetation, tipping points, and the rate of climate change, Europ. J. Appl. Math., 26 (2015), 945-958.
doi: 10.1017/S0956792515000261. |
[8] |
V. Deblauwe, P. Couteron, O. Lejeune, J. Bogaert and N. Barbier,
Environmental modulation of self-organized periodic vegetation patterns in Sudan, Ecography, 34 (2011), 990-1001.
doi: 10.1111/j.1600-0587.2010.06694.x. |
[9] |
M. Ehud, Y. Hezi and G. Erez,
Localized structures in dryland vegetation: Forms and functions, Chaos, 17 (2007), 037109.
doi: 10.1063/1.2767246. |
[10] |
T. Erneux and P. Mandel,
Imperfect bifurcation with a slowly varying control parameter, SIAM J. Appl. Math., 46 (1986), 1-15.
doi: 10.1137/0146001. |
[11] |
P. Gandhi, L. Werner, S. Iams, K. Gowda and M. Silber,
A topographic mechanism for arcing of dryland vegetation bands, J. Roy. Soc. Interface, 15 (2018), 20180508.
doi: 10.1098/rsif.2018.0508. |
[12] |
S. Getzin, T. E. Erickson, H. Yizhaq, M. Muñoz-Rojas, A. Huth and K. Wiegand,
Bridging ecology and physics: Australian fairy circles regenerate following model assumptions on ecohydrological feedbacks, J. Ecol., 109 (2021), 399-416.
doi: 10.1111/1365-2745.13493. |
[13] |
E. Gilad, J. von Hardenberg, A. Provenzale, M. Shachak and E. Meron,
Ecosystem engineers: From pattern formation to habitat creation, Phys. Rev. Lett., 93 (2004), 098105.
doi: 10.1103/PhysRevLett.93.098105. |
[14] |
K. Gowda, Y. Chen, S. Iams and M. Silber, Assessing the robustness of spatial pattern sequences in a dryland vegetation model, Proc. Roy. Soc. A: Math., Phys. and Eng. Sci., 472 (2016), 20150893, 25 pp.
doi: 10.1098/rspa.2015.0893. |
[15] |
K. Gowda, S. Iams and M. Silber, Signatures of human impact on self-organized vegetation in the Horn of Africa, Sci. Rep., 8 (2018), Article number: 3622.
doi: 10.1038/s41598-018-22075-5. |
[16] |
R. Haberman,
Slowly varying jump and transition phenomena associated with algebraic bifurcation problems, SIAM J. Appl. Math., 37 (1979), 69-106.
doi: 10.1137/0137006. |
[17] |
R. HilleRisLambers, M. Rietkerk, F. van den Bosch, H. H. T. Prins and H. de Kroon,
Vegetation pattern formation in semi-arid grazing systems, Ecology, 82 (2001), 50-61.
doi: 10.2307/2680085. |
[18] |
O. Jaïbi, A. Doelman, M. Chirilus-Bruckner and E. Meron, The existence of localized vegetation patterns in a systematically reduced model for dryland vegetation, Physica D, 412 (2020), 132637, 30 pp.
doi: 10.1016/j.physd.2020.132637. |
[19] |
C. A. Klausmeier,
Regular and irregular patterns in semiarid vegetation, Science, 284 (1999), 1826-1828.
doi: 10.1126/science.284.5421.1826. |
[20] |
K. Knopp, Theory and Application of Infinite Series, Dover Books on Mathematics, 2013. |
[21] |
T. Kolokolnikov, M. Ward, J. Tzou and J. Wei, Stabilizing a homoclinic stripe, Philos. Trans. Roy. Soc. A, 376 (2018), 20180110, 13 pp.
doi: 10.1098/rsta.2018.0110. |
[22] |
T. Kolokolnikov, M. J. Ward and J. Wei,
Spot self-replication and dynamics for the Schnakenburg model in a two-dimensional domain, J. Nonlinear Science, 19 (2009), 1-56.
doi: 10.1007/s00332-008-9024-z. |
[23] |
P. Mandel and T. Erneux,
The slow passage through a steady bifurcation: Delay and memory effects, J. Stat. Phys., 48 (1987), 1059-1070.
doi: 10.1007/BF01009533. |
[24] |
, MATLAB version 9.4.0. (R2018a), The Mathworks, Inc., Natick, Massachusetts, 2018. |
[25] |
E. Meron,
Modeling dryland landscapes, Math. Model. Nat. Phenom., 6 (2011), 163-187.
doi: 10.1051/mmnp/20116109. |
[26] |
E. Meron, Nonlinear Physics of Ecosystems, CRC Press, Boca Raton, Florida, 2015.
doi: 10.1201/b18360.![]() ![]() |
[27] |
M. Messaoudi, M. G. Clerc, E. Berríos-Caro, D. Pinto-Ramos, M. Khaffou, A. Makhoute and M. Tlidi, Patchy landscapes in arid environments: Nonlinear analysis of the interaction-redistribution model, Chaos, 30 (2020), 093136, 11 pp.
doi: 10.1063/5.0011010. |
[28] |
M. Rietkerk, M. C. Boerlijst, F. van Langevelde, R. HilleRisLambers, J. van de Koppel, L. Kumar, H. H. T. Prins and A. M. de Roos,
Self-organization of vegetation in arid ecosystems, Am. Nat., 160 (2002), 524-530.
doi: 10.1086/342078. |
[29] |
L. Sewalt and A. Doelman,
Spatially periodic multipulse patterns in a generalized Klausmeier–Gray–Scott model, SIAM J. Appl. Dyn. Sys., 16 (2017), 1113-1163.
doi: 10.1137/16M1078756. |
[30] |
J. A. Sherratt,
Pattern solutions of the Klausmeier model for banded vegetation in semi-arid environments Ⅰ, Nonlinearity, 23 (2010), 2657-2675.
doi: 10.1088/0951-7715/23/10/016. |
[31] |
J. A. Sherratt,
Pattern solutions of the Klausmeier model for banded vegetation in semiarid environments Ⅳ: Slowly moving patterns and their stability, SIAM J. Appl. Math., 73 (2013), 330-350.
doi: 10.1137/120862648. |
[32] |
J. A. Sherratt,
Pattern solutions of the Klausmeier model for banded vegetation in semiarid environments V: The transition from patterns to desert, SIAM J. Appl. Math., 73 (2013), 1347-1367.
doi: 10.1137/120899510. |
[33] |
E. Siero, A. Doelman, M. B. Eppinga, J. D. M. Rademacher, M. Rietkerk and K. Siteur, Striped pattern selection by advective reaction-diffusion systems: Resilience of banded vegetation on slopes, Chaos, 25 (2015), 036411, 22 pp.
doi: 10.1063/1.4914450. |
[34] |
K. Siteur, E. Siero, M. B. Eppinga, J. D. M. Rademacher, A. Doelman and M. Rietkerk,
Beyond Turing: The response of patterned ecosystems to environmental change, Ecol. Complex., 20 (2014), 81-96.
doi: 10.1016/j.ecocom.2014.09.002. |
[35] |
J. C. Tzou and L. Tzou,
Spot patterns of the Schnakenberg reaction-diffusion system on a curved torus, Nonlinearity, 33 (2020), 643-674.
doi: 10.1088/1361-6544/ab5161. |
[36] |
J. C. Tzou and L. Tzou,
Analysis of spot patterns on a coordinate-invariant model for vegetation on a curved terrain, SIAM J. Appl. Dyn. Sys., 19 (2020), 2500-2529.
doi: 10.1137/20M1326271. |
[37] |
J. C. Tzou, M. J. Ward and T. Kolokolnikov,
Slowly varying control parameters, delayed bifurcations, and the stability of spikes in reaction-diffusion systems, Physica D, 290 (2015), 24-43.
doi: 10.1016/j.physd.2014.09.008. |
[38] |
H. Uecker, D. Wetzel and J. D. M. Rademacher,
pde2path-A Matlab package for continuation and bifurcation in 2D elliptic systems, Numer. Math. Theory Methods Appl., 7 (2014), 58-106.
doi: 10.4208/nmtma.2014.1231nm. |
[39] |
S. van der Stelt, A. Doelman, G. Hek and J. D. M. Rademacher,
Rise and fall of periodic patterns for a generalized Klausmeier–Gray–Scott model, J. Nonlinear Science, 23 (2013), 39-95.
doi: 10.1007/s00332-012-9139-0. |
[40] |
J. von Hardenberg, E. Meron, M. Shachak and Y. Zarmi,
Diversity of vegetation patterns and desertification, Phys. Rev. Lett., 87 (2001), 198101.
doi: 10.1103/PhysRevLett.87.198101. |
[41] |
T. Wong and M. J. Ward,
Spot patterns in the 2-D Schnakenberg model with localized heterogeneities, Stud. Appl. Math., 146 (2021), 779-833.
doi: 10.1111/sapm.12361. |
[42] |
T. Wong and M. J. Ward,
Weakly nonlinear analysis of peanut-shaped deformations for localized spots of singularly perturbed reaction-diffusion systems, SIAM J. Appl. Dyn. Syst, 19 (2020), 2030-2058.
doi: 10.1137/20M1316779. |
[43] |
Y. R. Zelnik, E. Meron and G. Bel,
Gradual regime shifts in fairy circles, PNAS, 112 (2015), 12327-12331.
doi: 10.1073/pnas.1504289112. |
show all references
References:
[1] |
S. M. Baer, T. Erneux and J. Rinzel,
The slow passage through a Hopf bifurcation: Delay, memory effects, and resonance, SIAM J. Appl. Math., 49 (1989), 55-71.
doi: 10.1137/0149003. |
[2] |
R. Bastiaansen, P. Carter and A. Doelman,
Stable planar vegetation stripe patterns on sloped terrain in dryland ecosystems, Nonlinearity, 32 (2019), 2759-2814.
doi: 10.1088/1361-6544/ab1767. |
[3] |
R. Bastiaansen and A. Doelman,
The dynamics of disappearing pulses in a singularly perturbed reaction–diffusion system with parameters that vary in time and space, Physica D, 388 (2019), 45-72.
doi: 10.1016/j.physd.2018.09.003. |
[4] |
R. Bastiaansen, A. Doelman, M. B. Eppinga and M. Rietkerk,
The effect of climate change on the resilience of ecosystems with adaptive spatial pattern formation, Ecol. Lett., 23 (2020), 414-429.
doi: 10.1111/ele.13449. |
[5] |
R. Bastiaansen, O. Jaïbi, V. Deblauwe, M. B. Eppinga, K. Siteur, E. Siero, S. Mermoz, A. Bouvet, A. Doelman and M. Rietkerk,
Multistability of model and real dryland ecosystems through spatial self-organization, Proc. Natl. Acad. Sci. U.S.A., 115 (2018), 11256-11261.
doi: 10.1073/pnas.1804771115. |
[6] |
W. Chen and M. J. Ward,
The stability and dynamics of localized spot patterns in the two-dimensional Gray-Scott model, SIAM J. Appl. Dyn. Sys., 10 (2011), 582-666.
doi: 10.1137/09077357X. |
[7] |
Y. Chen, T. Kolokolnikov, J. Tzou and C. Gai,
Patterned vegetation, tipping points, and the rate of climate change, Europ. J. Appl. Math., 26 (2015), 945-958.
doi: 10.1017/S0956792515000261. |
[8] |
V. Deblauwe, P. Couteron, O. Lejeune, J. Bogaert and N. Barbier,
Environmental modulation of self-organized periodic vegetation patterns in Sudan, Ecography, 34 (2011), 990-1001.
doi: 10.1111/j.1600-0587.2010.06694.x. |
[9] |
M. Ehud, Y. Hezi and G. Erez,
Localized structures in dryland vegetation: Forms and functions, Chaos, 17 (2007), 037109.
doi: 10.1063/1.2767246. |
[10] |
T. Erneux and P. Mandel,
Imperfect bifurcation with a slowly varying control parameter, SIAM J. Appl. Math., 46 (1986), 1-15.
doi: 10.1137/0146001. |
[11] |
P. Gandhi, L. Werner, S. Iams, K. Gowda and M. Silber,
A topographic mechanism for arcing of dryland vegetation bands, J. Roy. Soc. Interface, 15 (2018), 20180508.
doi: 10.1098/rsif.2018.0508. |
[12] |
S. Getzin, T. E. Erickson, H. Yizhaq, M. Muñoz-Rojas, A. Huth and K. Wiegand,
Bridging ecology and physics: Australian fairy circles regenerate following model assumptions on ecohydrological feedbacks, J. Ecol., 109 (2021), 399-416.
doi: 10.1111/1365-2745.13493. |
[13] |
E. Gilad, J. von Hardenberg, A. Provenzale, M. Shachak and E. Meron,
Ecosystem engineers: From pattern formation to habitat creation, Phys. Rev. Lett., 93 (2004), 098105.
doi: 10.1103/PhysRevLett.93.098105. |
[14] |
K. Gowda, Y. Chen, S. Iams and M. Silber, Assessing the robustness of spatial pattern sequences in a dryland vegetation model, Proc. Roy. Soc. A: Math., Phys. and Eng. Sci., 472 (2016), 20150893, 25 pp.
doi: 10.1098/rspa.2015.0893. |
[15] |
K. Gowda, S. Iams and M. Silber, Signatures of human impact on self-organized vegetation in the Horn of Africa, Sci. Rep., 8 (2018), Article number: 3622.
doi: 10.1038/s41598-018-22075-5. |
[16] |
R. Haberman,
Slowly varying jump and transition phenomena associated with algebraic bifurcation problems, SIAM J. Appl. Math., 37 (1979), 69-106.
doi: 10.1137/0137006. |
[17] |
R. HilleRisLambers, M. Rietkerk, F. van den Bosch, H. H. T. Prins and H. de Kroon,
Vegetation pattern formation in semi-arid grazing systems, Ecology, 82 (2001), 50-61.
doi: 10.2307/2680085. |
[18] |
O. Jaïbi, A. Doelman, M. Chirilus-Bruckner and E. Meron, The existence of localized vegetation patterns in a systematically reduced model for dryland vegetation, Physica D, 412 (2020), 132637, 30 pp.
doi: 10.1016/j.physd.2020.132637. |
[19] |
C. A. Klausmeier,
Regular and irregular patterns in semiarid vegetation, Science, 284 (1999), 1826-1828.
doi: 10.1126/science.284.5421.1826. |
[20] |
K. Knopp, Theory and Application of Infinite Series, Dover Books on Mathematics, 2013. |
[21] |
T. Kolokolnikov, M. Ward, J. Tzou and J. Wei, Stabilizing a homoclinic stripe, Philos. Trans. Roy. Soc. A, 376 (2018), 20180110, 13 pp.
doi: 10.1098/rsta.2018.0110. |
[22] |
T. Kolokolnikov, M. J. Ward and J. Wei,
Spot self-replication and dynamics for the Schnakenburg model in a two-dimensional domain, J. Nonlinear Science, 19 (2009), 1-56.
doi: 10.1007/s00332-008-9024-z. |
[23] |
P. Mandel and T. Erneux,
The slow passage through a steady bifurcation: Delay and memory effects, J. Stat. Phys., 48 (1987), 1059-1070.
doi: 10.1007/BF01009533. |
[24] |
, MATLAB version 9.4.0. (R2018a), The Mathworks, Inc., Natick, Massachusetts, 2018. |
[25] |
E. Meron,
Modeling dryland landscapes, Math. Model. Nat. Phenom., 6 (2011), 163-187.
doi: 10.1051/mmnp/20116109. |
[26] |
E. Meron, Nonlinear Physics of Ecosystems, CRC Press, Boca Raton, Florida, 2015.
doi: 10.1201/b18360.![]() ![]() |
[27] |
M. Messaoudi, M. G. Clerc, E. Berríos-Caro, D. Pinto-Ramos, M. Khaffou, A. Makhoute and M. Tlidi, Patchy landscapes in arid environments: Nonlinear analysis of the interaction-redistribution model, Chaos, 30 (2020), 093136, 11 pp.
doi: 10.1063/5.0011010. |
[28] |
M. Rietkerk, M. C. Boerlijst, F. van Langevelde, R. HilleRisLambers, J. van de Koppel, L. Kumar, H. H. T. Prins and A. M. de Roos,
Self-organization of vegetation in arid ecosystems, Am. Nat., 160 (2002), 524-530.
doi: 10.1086/342078. |
[29] |
L. Sewalt and A. Doelman,
Spatially periodic multipulse patterns in a generalized Klausmeier–Gray–Scott model, SIAM J. Appl. Dyn. Sys., 16 (2017), 1113-1163.
doi: 10.1137/16M1078756. |
[30] |
J. A. Sherratt,
Pattern solutions of the Klausmeier model for banded vegetation in semi-arid environments Ⅰ, Nonlinearity, 23 (2010), 2657-2675.
doi: 10.1088/0951-7715/23/10/016. |
[31] |
J. A. Sherratt,
Pattern solutions of the Klausmeier model for banded vegetation in semiarid environments Ⅳ: Slowly moving patterns and their stability, SIAM J. Appl. Math., 73 (2013), 330-350.
doi: 10.1137/120862648. |
[32] |
J. A. Sherratt,
Pattern solutions of the Klausmeier model for banded vegetation in semiarid environments V: The transition from patterns to desert, SIAM J. Appl. Math., 73 (2013), 1347-1367.
doi: 10.1137/120899510. |
[33] |
E. Siero, A. Doelman, M. B. Eppinga, J. D. M. Rademacher, M. Rietkerk and K. Siteur, Striped pattern selection by advective reaction-diffusion systems: Resilience of banded vegetation on slopes, Chaos, 25 (2015), 036411, 22 pp.
doi: 10.1063/1.4914450. |
[34] |
K. Siteur, E. Siero, M. B. Eppinga, J. D. M. Rademacher, A. Doelman and M. Rietkerk,
Beyond Turing: The response of patterned ecosystems to environmental change, Ecol. Complex., 20 (2014), 81-96.
doi: 10.1016/j.ecocom.2014.09.002. |
[35] |
J. C. Tzou and L. Tzou,
Spot patterns of the Schnakenberg reaction-diffusion system on a curved torus, Nonlinearity, 33 (2020), 643-674.
doi: 10.1088/1361-6544/ab5161. |
[36] |
J. C. Tzou and L. Tzou,
Analysis of spot patterns on a coordinate-invariant model for vegetation on a curved terrain, SIAM J. Appl. Dyn. Sys., 19 (2020), 2500-2529.
doi: 10.1137/20M1326271. |
[37] |
J. C. Tzou, M. J. Ward and T. Kolokolnikov,
Slowly varying control parameters, delayed bifurcations, and the stability of spikes in reaction-diffusion systems, Physica D, 290 (2015), 24-43.
doi: 10.1016/j.physd.2014.09.008. |
[38] |
H. Uecker, D. Wetzel and J. D. M. Rademacher,
pde2path-A Matlab package for continuation and bifurcation in 2D elliptic systems, Numer. Math. Theory Methods Appl., 7 (2014), 58-106.
doi: 10.4208/nmtma.2014.1231nm. |
[39] |
S. van der Stelt, A. Doelman, G. Hek and J. D. M. Rademacher,
Rise and fall of periodic patterns for a generalized Klausmeier–Gray–Scott model, J. Nonlinear Science, 23 (2013), 39-95.
doi: 10.1007/s00332-012-9139-0. |
[40] |
J. von Hardenberg, E. Meron, M. Shachak and Y. Zarmi,
Diversity of vegetation patterns and desertification, Phys. Rev. Lett., 87 (2001), 198101.
doi: 10.1103/PhysRevLett.87.198101. |
[41] |
T. Wong and M. J. Ward,
Spot patterns in the 2-D Schnakenberg model with localized heterogeneities, Stud. Appl. Math., 146 (2021), 779-833.
doi: 10.1111/sapm.12361. |
[42] |
T. Wong and M. J. Ward,
Weakly nonlinear analysis of peanut-shaped deformations for localized spots of singularly perturbed reaction-diffusion systems, SIAM J. Appl. Dyn. Syst, 19 (2020), 2030-2058.
doi: 10.1137/20M1316779. |
[43] |
Y. R. Zelnik, E. Meron and G. Bel,
Gradual regime shifts in fairy circles, PNAS, 112 (2015), 12327-12331.
doi: 10.1073/pnas.1504289112. |


























0 | 36.01 | 4.5122 |
0.1 | 36.01 | 4.5078 |
0.3 | 36.18 | 4.4988 |
0.5 | 36.57 | 4.4887 |
0.7 | 37.16 | 4.4780 |
1 | 38.40 | 4.4647 |
0 | 36.01 | 4.5122 |
0.1 | 36.01 | 4.5078 |
0.3 | 36.18 | 4.4988 |
0.5 | 36.57 | 4.4887 |
0.7 | 37.16 | 4.4780 |
1 | 38.40 | 4.4647 |
[1] |
Qingyan Shi, Junping Shi, Yongli Song. Hopf bifurcation and pattern formation in a delayed diffusive logistic model with spatial heterogeneity. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 467-486. doi: 10.3934/dcdsb.2018182 |
[2] |
Hasib Khan, Cemil Tunc, Aziz Khan. Green function's properties and existence theorems for nonlinear singular-delay-fractional differential equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : 2475-2487. doi: 10.3934/dcdss.2020139 |
[3] |
Seick Kim, Longjuan Xu. Green's function for second order parabolic equations with singular lower order coefficients. Communications on Pure and Applied Analysis, 2022, 21 (1) : 1-21. doi: 10.3934/cpaa.2021164 |
[4] |
Peter Bella, Arianna Giunti. Green's function for elliptic systems: Moment bounds. Networks and Heterogeneous Media, 2018, 13 (1) : 155-176. doi: 10.3934/nhm.2018007 |
[5] |
Virginia Agostiniani, Rolando Magnanini. Symmetries in an overdetermined problem for the Green's function. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 791-800. doi: 10.3934/dcdss.2011.4.791 |
[6] |
Sungwon Cho. Alternative proof for the existence of Green's function. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1307-1314. doi: 10.3934/cpaa.2011.10.1307 |
[7] |
Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042 |
[8] |
Fengqi Yi, Eamonn A. Gaffney, Sungrim Seirin-Lee. The bifurcation analysis of turing pattern formation induced by delay and diffusion in the Schnakenberg system. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 647-668. doi: 10.3934/dcdsb.2017031 |
[9] |
Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part II. Networks and Heterogeneous Media, 2015, 10 (4) : 897-948. doi: 10.3934/nhm.2015.10.897 |
[10] |
Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part I. Networks and Heterogeneous Media, 2013, 8 (4) : 1009-1034. doi: 10.3934/nhm.2013.8.1009 |
[11] |
Jian-Jun Xu, Junichiro Shimizu. Asymptotic theory for disc-like crystal growth (II): interfacial instability and pattern formation at early stage of growth. Communications on Pure and Applied Analysis, 2004, 3 (3) : 527-543. doi: 10.3934/cpaa.2004.3.527 |
[12] |
Fabio Camilli, Annalisa Cesaroni. A note on singular perturbation problems via Aubry-Mather theory. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 807-819. doi: 10.3934/dcds.2007.17.807 |
[13] |
Jeremiah Birrell. A posteriori error bounds for two point boundary value problems: A green's function approach. Journal of Computational Dynamics, 2015, 2 (2) : 143-164. doi: 10.3934/jcd.2015001 |
[14] |
Wen-ming He, Jun-zhi Cui. The estimate of the multi-scale homogenization method for Green's function on Sobolev space $W^{1,q}(\Omega)$. Communications on Pure and Applied Analysis, 2012, 11 (2) : 501-516. doi: 10.3934/cpaa.2012.11.501 |
[15] |
David Hoff. Pointwise bounds for the Green's function for the Neumann-Laplace operator in $ \text{R}^3 $. Kinetic and Related Models, 2022, 15 (4) : 535-550. doi: 10.3934/krm.2021037 |
[16] |
Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5251-5279. doi: 10.3934/dcdsb.2020342 |
[17] |
A. V. Babin. Preservation of spatial patterns by a hyperbolic equation. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 1-19. doi: 10.3934/dcds.2004.10.1 |
[18] |
Torsten Lindström. Discrete models and Fisher's maximum principle in ecology. Conference Publications, 2003, 2003 (Special) : 571-579. doi: 10.3934/proc.2003.2003.571 |
[19] |
Stéphane Chrétien, Sébastien Darses, Christophe Guyeux, Paul Clarkson. On the pinning controllability of complex networks using perturbation theory of extreme singular values. application to synchronisation in power grids. Numerical Algebra, Control and Optimization, 2017, 7 (3) : 289-299. doi: 10.3934/naco.2017019 |
[20] |
Robert Stephen Cantrell, Chris Cosner, William F. Fagan. The implications of model formulation when transitioning from spatial to landscape ecology. Mathematical Biosciences & Engineering, 2012, 9 (1) : 27-60. doi: 10.3934/mbe.2012.9.27 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]