
-
Previous Article
Recovering time-dependent diffusion coefficients in a nonautonomous parabolic equation from energy measurements
- DCDS-S Home
- This Issue
-
Next Article
$ L^p $-strong solution for the stationary exterior Stokes equations with Navier boundary condition
Polynomial stability in viscoelastic network of strings
1. | UR Analysis and Control of PDEs, UR13ES64, ISCAE, University of Manouba, Tunisia |
2. | UR Analysis and Control of PDEs, UR13ES64, Department of Mathematics, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia |
In this paper we consider star-shaped viscoelastic networks, and study the large-time behaviour of these networks by proving polynomial decay rates. The energy decay rate depends on the irrationality properties of the lengths of the rods.
References:
[1] |
M. Alves, J. Muñoz Rivera, M. Sepùlveda, O. Vera Villagrán and M. Z. Garay,
The asymptotic behavior of the linear transmission problem in viscoelasticity, Math. Nachr., 287 (2014), 483-497.
doi: 10.1002/mana.201200319. |
[2] |
K. Ammari, Z. Liu and F. Shel,
Stability of the wave equations on a tree with local Kelvin-Voigt damping, Semigroup Forum, 100 (2020), 364-382.
doi: 10.1007/s00233-019-10064-7. |
[3] |
A. Bátkai, K.-J. Engel, J. Prüss and R. Schnaubelt,
Polynomial stability of operator semigroups, Math. Nachr., 279 (2006), 1425-1440.
doi: 10.1002/mana.200410429. |
[4] |
C. J. K. Batty, R. Chill and Y. Tomilov,
Fine scales of decay of operator semigroups, J. Eur. Math. Soc. (JEMS), 18 (2016), 853-929.
doi: 10.4171/JEMS/605. |
[5] |
C. J. K. Batty and T. Duyckaerts,
Non-uniform stability for bounded semigroups on Banach spaces, J. Evol. Equ., 8 (2008), 765-780.
doi: 10.1007/s00028-008-0424-1. |
[6] |
A. Bchatnia, K. El Mufti and R. Yahia,
Stability of an infinite star-shaped network of strings by a Kelvin-Voigt damping, Math. Methods Appl. Sci., 45 (2022), 2024-2041.
doi: 10.1002/mma.7903. |
[7] |
A. Borichev and Y. Tomilov,
Optimal polynomial decay of functions and operator semigroups, Math. Ann., 347 (2010), 455-478.
doi: 10.1007/s00208-009-0439-0. |
[8] |
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011. |
[9] |
R. Dàger and E. Zuazua, Wave Propagation, Observation and Control in 1-d Flexible Multi-Structures, Mathématiques & Applications (Berlin), 50. Springer-Verlag, Berlin, 2006.
doi: 10.1007/3-540-37726-3. |
[10] |
Z.-J. Han and E. Zuazua,
Decay rates for elastic-thermoelastic star-shaped networks, Netw. Heterog. Media, 12 (2017), 461-488.
doi: 10.3934/nhm.2017020. |
[11] |
F. Hassine,
Stability of a star-shaped network with local Kelvin-Voigt damping and non-smooth coefficient at interface, J. Differential Equations, 297 (2021), 1-24.
doi: 10.1016/j.jde.2021.06.017. |
[12] |
K. Liu and Z. Liu,
Exponential decay of energy of vibrating strings with local viscoelasticity, Z. Angew. Math. Phys., 53 (2002), 265-280.
doi: 10.1007/s00033-002-8155-6. |
[13] |
K. Liu and Z. Liu,
Exponential decay of energy of the Euler-Bernoulli beam with locally distributed Kelvin-Voigt damping, SIAM J. Control. Optim., 36 (1998), 1086-1098.
doi: 10.1137/S0363012996310703. |
[14] |
K. Liu, Z. Liu and Q. Zhang,
Eventual differentiability of a string with local Kelvin-Voigt damping, ESAIM Control Optim. Calc. Var., 23 (2017), 443-454.
doi: 10.1051/cocv/2015055. |
[15] |
Z. Liu and R. Quintanilla,
Energy decay rate of a mixed type Ⅱ and type Ⅲ thermolastic system, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1433-1444.
doi: 10.3934/dcdsb.2010.14.1433. |
[16] |
Z. Liu and B. Rao,
Characterization of polynomial decay rate for the solution of linear evolution equation, Z. Angew.Math. Phys., 56 (2005), 630-644.
doi: 10.1007/s00033-004-3073-4. |
[17] |
Z. Liu and Q. Zhang,
Stability of a string with local Kelvin-Voigt damping and nonsmooth coefficient at interface, SIAM J. Control Optim., 54 (2016), 1859-1871.
doi: 10.1137/15M1049385. |
[18] |
Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems, Chapman & Hall/CRC Research Notes in Mathematics, 398. Chapman & Hall/CRC, Boca Raton, FL, 1999. |
[19] |
B. Muckenhoupt,
Hardy's inequality with weights, Stud. Math., 44 (1972), 31-38.
doi: 10.4064/sm-44-1-31-38. |
[20] |
M. Renardy,
On localized Kelvin-Voigt damping, Z. Angew. Math. Mech., 84 (2004), 280-283.
doi: 10.1002/zamm.200310100. |
[21] |
W. M. Schmidt,
Simultaneous approximation to algebraic numbers by rationals, Acta Math., 125 (1970), 189-201.
doi: 10.1007/BF02392334. |
[22] |
V. D. Stepanov,
Weighted Hardy inequality, Siberian Math. J, 28 (1987), 515-517.
|
[23] |
Q. Zhang,
Exponential stability of an elastic string with local Kelvin-Voigt damping, Z. Angew. Math. Phys., 61 (2010), 1009-1015.
doi: 10.1007/s00033-010-0064-5. |
show all references
References:
[1] |
M. Alves, J. Muñoz Rivera, M. Sepùlveda, O. Vera Villagrán and M. Z. Garay,
The asymptotic behavior of the linear transmission problem in viscoelasticity, Math. Nachr., 287 (2014), 483-497.
doi: 10.1002/mana.201200319. |
[2] |
K. Ammari, Z. Liu and F. Shel,
Stability of the wave equations on a tree with local Kelvin-Voigt damping, Semigroup Forum, 100 (2020), 364-382.
doi: 10.1007/s00233-019-10064-7. |
[3] |
A. Bátkai, K.-J. Engel, J. Prüss and R. Schnaubelt,
Polynomial stability of operator semigroups, Math. Nachr., 279 (2006), 1425-1440.
doi: 10.1002/mana.200410429. |
[4] |
C. J. K. Batty, R. Chill and Y. Tomilov,
Fine scales of decay of operator semigroups, J. Eur. Math. Soc. (JEMS), 18 (2016), 853-929.
doi: 10.4171/JEMS/605. |
[5] |
C. J. K. Batty and T. Duyckaerts,
Non-uniform stability for bounded semigroups on Banach spaces, J. Evol. Equ., 8 (2008), 765-780.
doi: 10.1007/s00028-008-0424-1. |
[6] |
A. Bchatnia, K. El Mufti and R. Yahia,
Stability of an infinite star-shaped network of strings by a Kelvin-Voigt damping, Math. Methods Appl. Sci., 45 (2022), 2024-2041.
doi: 10.1002/mma.7903. |
[7] |
A. Borichev and Y. Tomilov,
Optimal polynomial decay of functions and operator semigroups, Math. Ann., 347 (2010), 455-478.
doi: 10.1007/s00208-009-0439-0. |
[8] |
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011. |
[9] |
R. Dàger and E. Zuazua, Wave Propagation, Observation and Control in 1-d Flexible Multi-Structures, Mathématiques & Applications (Berlin), 50. Springer-Verlag, Berlin, 2006.
doi: 10.1007/3-540-37726-3. |
[10] |
Z.-J. Han and E. Zuazua,
Decay rates for elastic-thermoelastic star-shaped networks, Netw. Heterog. Media, 12 (2017), 461-488.
doi: 10.3934/nhm.2017020. |
[11] |
F. Hassine,
Stability of a star-shaped network with local Kelvin-Voigt damping and non-smooth coefficient at interface, J. Differential Equations, 297 (2021), 1-24.
doi: 10.1016/j.jde.2021.06.017. |
[12] |
K. Liu and Z. Liu,
Exponential decay of energy of vibrating strings with local viscoelasticity, Z. Angew. Math. Phys., 53 (2002), 265-280.
doi: 10.1007/s00033-002-8155-6. |
[13] |
K. Liu and Z. Liu,
Exponential decay of energy of the Euler-Bernoulli beam with locally distributed Kelvin-Voigt damping, SIAM J. Control. Optim., 36 (1998), 1086-1098.
doi: 10.1137/S0363012996310703. |
[14] |
K. Liu, Z. Liu and Q. Zhang,
Eventual differentiability of a string with local Kelvin-Voigt damping, ESAIM Control Optim. Calc. Var., 23 (2017), 443-454.
doi: 10.1051/cocv/2015055. |
[15] |
Z. Liu and R. Quintanilla,
Energy decay rate of a mixed type Ⅱ and type Ⅲ thermolastic system, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1433-1444.
doi: 10.3934/dcdsb.2010.14.1433. |
[16] |
Z. Liu and B. Rao,
Characterization of polynomial decay rate for the solution of linear evolution equation, Z. Angew.Math. Phys., 56 (2005), 630-644.
doi: 10.1007/s00033-004-3073-4. |
[17] |
Z. Liu and Q. Zhang,
Stability of a string with local Kelvin-Voigt damping and nonsmooth coefficient at interface, SIAM J. Control Optim., 54 (2016), 1859-1871.
doi: 10.1137/15M1049385. |
[18] |
Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems, Chapman & Hall/CRC Research Notes in Mathematics, 398. Chapman & Hall/CRC, Boca Raton, FL, 1999. |
[19] |
B. Muckenhoupt,
Hardy's inequality with weights, Stud. Math., 44 (1972), 31-38.
doi: 10.4064/sm-44-1-31-38. |
[20] |
M. Renardy,
On localized Kelvin-Voigt damping, Z. Angew. Math. Mech., 84 (2004), 280-283.
doi: 10.1002/zamm.200310100. |
[21] |
W. M. Schmidt,
Simultaneous approximation to algebraic numbers by rationals, Acta Math., 125 (1970), 189-201.
doi: 10.1007/BF02392334. |
[22] |
V. D. Stepanov,
Weighted Hardy inequality, Siberian Math. J, 28 (1987), 515-517.
|
[23] |
Q. Zhang,
Exponential stability of an elastic string with local Kelvin-Voigt damping, Z. Angew. Math. Phys., 61 (2010), 1009-1015.
doi: 10.1007/s00033-010-0064-5. |

[1] |
Rachid Assel, Mohamed Ghazel. Energy decay for the damped wave equation on an unbounded network. Evolution Equations and Control Theory, 2018, 7 (3) : 335-351. doi: 10.3934/eect.2018017 |
[2] |
Bopeng Rao, Xu Zhang. Frequency domain approach to decay rates for a coupled hyperbolic-parabolic system. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2789-2809. doi: 10.3934/cpaa.2021119 |
[3] |
George Avalos, Roberto Triggiani. Rational decay rates for a PDE heat--structure interaction: A frequency domain approach. Evolution Equations and Control Theory, 2013, 2 (2) : 233-253. doi: 10.3934/eect.2013.2.233 |
[4] |
Fatiha Alabau-Boussouira, Vincent Perrollaz, Lionel Rosier. Finite-time stabilization of a network of strings. Mathematical Control and Related Fields, 2015, 5 (4) : 721-742. doi: 10.3934/mcrf.2015.5.721 |
[5] |
Marta Lewicka, Piotr B. Mucha. A local existence result for a system of viscoelasticity with physical viscosity. Evolution Equations and Control Theory, 2013, 2 (2) : 337-353. doi: 10.3934/eect.2013.2.337 |
[6] |
Aihua Li. An algebraic approach to building interpolating polynomial. Conference Publications, 2005, 2005 (Special) : 597-604. doi: 10.3934/proc.2005.2005.597 |
[7] |
L.R. Ritter, Akif Ibragimov, Jay R. Walton, Catherine J. McNeal. Stability analysis using an energy estimate approach of a reaction-diffusion model of atherogenesis. Conference Publications, 2009, 2009 (Special) : 630-639. doi: 10.3934/proc.2009.2009.630 |
[8] |
Michiko Yuri. Polynomial decay of correlations for intermittent sofic systems. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 445-464. doi: 10.3934/dcds.2008.22.445 |
[9] |
Zhong-Jie Han, Gen-Qi Xu. Spectrum and dynamical behavior of a kind of planar network of non-uniform strings with non-collocated feedbacks. Networks and Heterogeneous Media, 2010, 5 (2) : 315-334. doi: 10.3934/nhm.2010.5.315 |
[10] |
Walid Boughamda. Boundary stabilization for a star-shaped network of variable coefficients strings linked by a point mass. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1103-1125. doi: 10.3934/dcdss.2021139 |
[11] |
Vittorino Pata. Exponential stability in linear viscoelasticity with almost flat memory kernels. Communications on Pure and Applied Analysis, 2010, 9 (3) : 721-730. doi: 10.3934/cpaa.2010.9.721 |
[12] |
Giovambattista Amendola, Mauro Fabrizio, John Murrough Golden. Minimum free energy in the frequency domain for a heat conductor with memory. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 793-816. doi: 10.3934/dcdsb.2010.14.793 |
[13] |
Priyanjana M. N. Dharmawardane. Decay property of regularity-loss type for quasi-linear hyperbolic systems of viscoelasticity. Conference Publications, 2013, 2013 (special) : 197-206. doi: 10.3934/proc.2013.2013.197 |
[14] |
Gustavo Alberto Perla Menzala, Julian Moises Sejje Suárez. A thermo piezoelectric model: Exponential decay of the total energy. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5273-5292. doi: 10.3934/dcds.2013.33.5273 |
[15] |
Mohammed Aassila. On energy decay rate for linear damped systems. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 851-864. doi: 10.3934/dcds.2002.8.851 |
[16] |
Bopeng Rao. Optimal energy decay rate in a damped Rayleigh beam. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 721-734. doi: 10.3934/dcds.1998.4.721 |
[17] |
Alberto Ferrero, Filippo Gazzola, Hans-Christoph Grunau. Decay and local eventual positivity for biharmonic parabolic equations. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1129-1157. doi: 10.3934/dcds.2008.21.1129 |
[18] |
Stefano Fasani, Sergio Rinaldi. Local stabilization and network synchronization: The case of stationary regimes. Mathematical Biosciences & Engineering, 2010, 7 (3) : 623-639. doi: 10.3934/mbe.2010.7.623 |
[19] |
Jianfeng Feng, Mariya Shcherbina, Brunello Tirozzi. Stability of the dynamics of an asymmetric neural network. Communications on Pure and Applied Analysis, 2009, 8 (2) : 655-671. doi: 10.3934/cpaa.2009.8.655 |
[20] |
Guillaume Cantin, Alexandre Thorel. On a generalized diffusion problem: A complex network approach. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2345-2365. doi: 10.3934/dcdsb.2021135 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]