[1]
|
F. Amato, M. Ariola and P. Dorato, Finite-time control of linear systems subject to parametric uncertainties and disturbances, Automatica, 37 (2001), 1459-1463.
doi: 10.1016/S0005-1098(01)00087-5.
|
[2]
|
F. Amato, G. De Tommasi and A. Pironti, Necessary and sufficient conditions for finite-time stability of impulsive dynamical linear systems, Automatica J. IFAC, 49 (2013), 2546-2550.
doi: 10.1016/j.automatica.2013.04.004.
|
[3]
|
G. Ballinger and X. Liu, Existence and uniqueness results for impulsive delay differential equations, Dynamics of Continuous Discrete and Impulsive Systems, 5 (1999), 579-591.
|
[4]
|
C. Briat, Stability analysis and stabilization of stochastic linear impulsive, switched and sampled-data systems under dwell-time constraints, Automatica J. IFAC, 74 (2016), 279-287.
doi: 10.1016/j.automatica.2016.08.001.
|
[5]
|
C. Briat and A. Seuret, Convex dwell-time characterizations for uncertain linear impulsive systems, IEEE Trans. Automat. Control, 57 (2012), 3241-3246.
doi: 10.1109/TAC.2012.2200379.
|
[6]
|
W. Cao and Q. Zhu, Razumikhin-type theorem for pth exponential stability of impulsive stochastic functional differential equations based on vector lyapunov function, Nonlinear Anal. Hybrid Syst., 39 (2021), 100983, 10 pp.
doi: 10.1016/j.nahs.2020.100983.
|
[7]
|
J. Chen, B. Chen, Z. Zeng and P. Jiang, Effects of subsystem and coupling on synchronization of multiple neural networks with delays via impulsive coupling, IEEE Trans. Neural Netw. Learn. Syst., 30 (2019), 3748-3758.
doi: 10.1109/TNNLS.2019.2898919.
|
[8]
|
J. Chen, X. Li and D. Wang, Asymptotic stability and exponential stability of impulsive delayed Hopfield neural networks, Abstr. Appl. Anal., (2013), Art. ID 638496, 10 pp.
doi: 10.1155/2013/638496.
|
[9]
|
W.-H. Chen, Z. Ruan and W. X. Zheng, Stability and ${L}_2$-gain analysis for linear time-delay systems with delayed impulses: An augmentation-based switching impulse approach, IEEE Trans. Automat. Control, 64 (2019), 4209-4216.
doi: 10.1109/TAC.2019.2893149.
|
[10]
|
W.-H. Chen, D. Wei and X. Lu, Global exponential synchronization of nonlinear time-delay lur'e systems via delayed impulsive control, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 3298-3312.
doi: 10.1016/j.cnsns.2014.01.018.
|
[11]
|
W.-H. Chen, D. Wei and W. X. Zheng, Delayed impulsive control of Takagi–Sugeno fuzzy delay systems, IEEE Transactions on Fuzzy Systems, 21 (2013), 516-526.
doi: 10.1109/TFUZZ.2012.2217147.
|
[12]
|
W.-H. Chen and W. X. Zheng, Exponential stability of nonlinear time-delay systems with delayed impulse effects, Automatica J. IFAC, 47 (2011), 1075-1083.
doi: 10.1016/j.automatica.2011.02.031.
|
[13]
|
K. E. M. Church and X. Liu, Invariant manifold-guided impulsive stabilization of delay equations, IEEE Trans. Automat. Control, 66 (2021), 5997-6002.
doi: 10.1109/TAC.2021.3057988.
|
[14]
|
S. Dashkovskiy and P. Feketa, Input-to-state stability of impulsive systems and their networks, Nonlinear Anal. Hybrid Syst., 26 (2017), 190-200.
doi: 10.1016/j.nahs.2017.06.004.
|
[15]
|
S. Dashkovskiy, M. Kosmykov, A. Mironchenko and L. Naujok, Stability of interconnected impulsive systems with and without time delays, using Lyapunov methods, Nonlinear Anal. Hybrid Syst., 6 (2012), 899-915.
doi: 10.1016/j.nahs.2012.02.001.
|
[16]
|
S. Dashkovskiy and A. Mironchenko, Input-to-state stability of nonlinear impulsive systems, SIAM J. Control Optim., 51 (2013), 1962-1987.
doi: 10.1137/120881993.
|
[17]
|
K. H. Degue, D. Efimov and J.-P. Richard, Stabilization of linear impulsive systems under dwell-time constraints: Interval observer-based framework, Eur. J. Control, 42 (2018), 1-14.
doi: 10.1016/j.ejcon.2018.01.001.
|
[18]
|
W. Du, S. Y. S. Leung, Y. Tang and A. V. Vasilakos, Differential evolution with event-triggered impulsive control, IEEE Transactions on Cybernetics, 47 (2017), 244-257.
doi: 10.1109/TCYB.2015.2512942.
|
[19]
|
P. Feketa and N. Bajcinca, On robustness of impulsive stabilization, Automatica J. IFAC, 104 (2019), 48-56.
doi: 10.1016/j.automatica.2019.02.056.
|
[20]
|
P. Getto and M. Waurick, A differential equation with state-dependent delay from cell population biology, J. Differential Equations, 260 (2016), 6176-6200.
doi: 10.1016/j.jde.2015.12.038.
|
[21]
|
K. Gu, V. L. Kharitonov and J. Chen, Stability of Time-Delay Systems, Birkhäuser Boston, Inc., Boston, MA, 2003.
doi: 10.1007/978-1-4612-0039-0.
|
[22]
|
Z.-H. Guan and G. Chen, On delayed impulsive hopfield neural networks, Neural Networks, 12 (1999), 273-280.
doi: 10.1016/S0893-6080(98)00133-6.
|
[23]
|
Z.-H. Guan, D. J. Hill and X. Shen, On hybrid impulsive and switching systems and application to nonlinear control, IEEE Trans. Automat. Control, 50 (2005), 1058-1062.
doi: 10.1109/TAC.2005.851462.
|
[24]
|
Z.-H. Guan, Z.-W. Liu, G. Feng and M. Jian, Impulsive consensus algorithms for second-order multi-agent networks with sampled information, Automatica J. IFAC, 48 (2012), 1397-1404.
doi: 10.1016/j.automatica.2012.05.005.
|
[25]
|
Z.-H. Guan, Z.-W. Liu, G. Feng and Y.-W. Wang, Synchronization of complex dynamical networks with time-varying delays via impulsive distributed control, IEEE Transactions on Circuits and Systems I: Regular Papers, 57 (2010), 2182-2195.
|
[26]
|
W. M. Haddad, V. Chellaboina and S. G. Nersesov, Impulsive and Hybrid Dynamical Systems, Princeton University Press, 2006.
doi: 10.1515/9781400865246.
|
[27]
|
H. Haimovich and J. L. Mancilla-Aguilar, Nonrobustness of asymptotic stability of impulsive systems with inputs, Automatica J. IFAC, 122 (2020), 109238, 9 pp.
doi: 10.1016/j.automatica.2020.109238.
|
[28]
|
H. Haimovich and J. L. Mancilla-Aguilar, Strong ISS implies strong iISS for time-varying impulsive systems, Automatica J. IFAC, 122 (2020), 109224, 12 pp.
doi: 10.1016/j.automatica.2020.109224.
|
[29]
|
F. Hartung, T. Krisztin, H.-O. Walther and J. Wu, Functional differential equations with state-dependent delays: Theory and applications, in Handbook of Differential Equations: Ordinary Differential Equations, vol. 3, Elsevier, 2006,435–545.
doi: 10.1016/S1874-5725(06)80009-X.
|
[30]
|
W. He, X. Gao, W. Zhong and F. Qian, Secure impulsive synchronization control of multi-agent systems under deception attacks, Inform. Sci., 459 (2018), 354-368.
doi: 10.1016/j.ins.2018.04.020.
|
[31]
|
W. He, F. Qian, Q.-L. Han and G. Chen, Almost sure stability of nonlinear systems under random and impulsive sequential attacks, IEEE Trans. Automat. Control, 65 (2020), 3879-3886.
doi: 10.1109/TAC.2020.2972220.
|
[32]
|
W. He, F. Qian, J. Lam, G. Chen, Q.-L. Han and J. Kurths, Quasi-synchronization of heterogeneous dynamic networks via distributed impulsive control: Error estimation, optimization and design, Automatica J. IFAC, 62 (2015), 249-262.
doi: 10.1016/j.automatica.2015.09.028.
|
[33]
|
X. He, D. Peng and X. Li, Synchronization of complex networks with impulsive control involving stabilizing delay, J. Franklin Inst., 357 (2020), 4869-4886.
doi: 10.1016/j.jfranklin.2020.03.044.
|
[34]
|
X. He, Y. Wang and X. Li, Uncertain impulsive control for leader-following synchronization of complex networks, Chaos Solitons Fractals, 147 (2021), 110980, 7 pp.
doi: 10.1016/j.chaos.2021.110980.
|
[35]
|
Z. He, C. Li, H. Li and Q. Zhang, Global exponential stability of high-order hopfield neural networks with state-dependent impulses, Phys. A, 542 (2020), 123434, 21 pp.
doi: 10.1016/j.physa.2019.123434.
|
[36]
|
J. P. Hespanha, D. Liberzon and A. R. Teel, Lyapunov conditions for input-to-state stability of impulsive systems, Automatica J. IFAC, 44 (2008), 2735-2744.
doi: 10.1016/j.automatica.2008.03.021.
|
[37]
|
J. Hu, G. Sui, X. Lv and X. Li, Fixed-time control of delayed neural networks with impulsive perturbations, Nonlinear Anal. Model. Control, 23 (2018), 904-920.
doi: 10.15388/NA.2018.6.6.
|
[38]
|
B. Jiang, J. Lu and Y. Liu, Exponential stability of delayed systems with average-delay impulses, SIAM J. Control Optim., 58 (2020), 3763-3784.
doi: 10.1137/20M1317037.
|
[39]
|
B. Jiang, J. Lu, J. Lou and J. Qiu, Synchronization in an array of coupled neural networks with delayed impulses: Average impulsive delay method, Neural Networks, 121 (2020), 452-460.
doi: 10.1016/j.neunet.2019.09.019.
|
[40]
|
A. Khadra, X. Z. Liu and X. Shen, Analyzing the robustness of impulsive synchronization coupled by linear delayed impulses, IEEE Trans. Automat. Control, 54 (2009), 923-928.
doi: 10.1109/TAC.2009.2013029.
|
[41]
|
A. Khadra, X. Z. Liu and X. Shen, Impulsively synchronizing chaotic systems with delay and applications to secure communication, Automatica J. IFAC, 41 (2005), 1491-1502.
doi: 10.1016/j.automatica.2005.04.012.
|
[42]
|
V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations, vol. 6, World Scientific, 1989.
doi: 10.1142/0906.
|
[43]
|
H. Li, C. Li, D. Ouyang and S. K. Nguang, Impulsive synchronization of unbounded delayed inertial neural networks with actuator saturation and sampled-data control and its application to image encryption, IEEE Trans. Neural Netw. Learn. Syst., 32 (2021), 1460-1473.
doi: 10.1109/TNNLS.2020.2984770.
|
[44]
|
P. Li, X. Li and J. Lu, Input-to-state stability of impulsive delay systems with multiple impulses, IEEE Trans. Automat. Control, 66 (2021), 362-368.
doi: 10.1109/TAC.2020.2982156.
|
[45]
|
X. Li, Further analysis on uniform stability of impulsive infinite delay differential equations, Appl. Math. Lett., 25 (2012), 133-137.
doi: 10.1016/j.aml.2011.08.001.
|
[46]
|
X. Li, H. Akca and X. Fu, Uniform stability of impulsive infinite delay differential equations with applications to systems with integral impulsive conditions, Appl. Math. Comput., 219 (2013), 7329-7337.
doi: 10.1016/j.amc.2012.12.033.
|
[47]
|
X. Li and M. Bohner, An impulsive delay differential inequality and applications, Comput. Math. Appl., 64 (2012), 1875-1881.
doi: 10.1016/j.camwa.2012.03.013.
|
[48]
|
X. Li, M. Bohner and C.-K. Wang, Impulsive differential equations: Periodic solutions and applications, Automatica J. IFAC, 52 (2015), 173-178.
doi: 10.1016/j.automatica.2014.11.009.
|
[49]
|
X. Li, T. Caraballo, R. Rakkiyappan and X. Han, On the stability of impulsive functional differential equations with infinite delays, Math. Methods Appl. Sci., 38 (2015), 3130-3140.
doi: 10.1002/mma.3303.
|
[50]
|
X. Li, D. W. C. Ho and J. Cao, Finite-time stability and settling-time estimation of nonlinear impulsive systems, Automatica J. IFAC, 99 (2019), 361-368.
doi: 10.1016/j.automatica.2018.10.024.
|
[51]
|
X. Li and P. Li, Stability of time-delay systems with impulsive control involving stabilizing delays, Automatica J. IFAC, 124 (2021), 109336, 6 pp.
doi: 10.1016/j.automatica.2020.109336.
|
[52]
|
X. Li, D. O'Regan and H. Akca, Global exponential stabilization of impulsive neural networks with unbounded continuously distributed delays, IMA J. Appl. Math., 80 (2015), 85-99.
doi: 10.1093/imamat/hxt027.
|
[53]
|
X. Li, D. Peng and J. Cao, Lyapunov stability for impulsive systems via event-triggered impulsive control, IEEE Trans. Automat. Control, 65 (2020), 4908-4913.
doi: 10.1109/TAC.2020.2964558.
|
[54]
|
X. Li, J. Shen, H. Akca and R. Rakkiyappan, LMI-based stability for singularly perturbed nonlinear impulsive differential systems with delays of small parameter, Appl. Math. Comput., 250 (2015), 798-804.
doi: 10.1016/j.amc.2014.10.113.
|
[55]
|
X. Li, J. Shen and R. Rakkiyappan, Persistent impulsive effects on stability of functional differential equations with finite or infinite delay, Appl. Math. Comput., 329 (2018), 14-22.
doi: 10.1016/j.amc.2018.01.036.
|
[56]
|
X. Li and S. Song, Stabilization of delay systems: Delay-dependent impulsive control, IEEE Trans. Automat. Control, 62 (2017), 406-411.
doi: 10.1109/TAC.2016.2530041.
|
[57]
|
X. Li and S. Song, Impulsive Systems with Delays: Stability and Control, Springer, Singapore, 2022.
doi: 10.1007/978-981-16-4687-4.
|
[58]
|
X. Li, S. Song and J. Wu, Exponential stability of nonlinear systems with delayed impulses and applications, IEEE Trans. Automat. Control, 64 (2019), 4024-4034.
doi: 10.1109/TAC.2019.2905271.
|
[59]
|
X. Li and J. Wu, Stability of nonlinear differential systems with state-dependent delayed impulses, Automatica J. IFAC, 64 (2016), 63-69.
doi: 10.1016/j.automatica.2015.10.002.
|
[60]
|
X. Li and J. Wu, Sufficient stability conditions of nonlinear differential systems under impulsive control with state-dependent delay, IEEE Trans. Automat. Control, 63 (2018), 306-311.
doi: 10.1109/TAC.2016.2639819.
|
[61]
|
X. Li, X. Yang and J. Cao, Event-triggered impulsive control for nonlinear delay systems, Automatica J. IFAC, 117 (2020), 108981, 7 pp.
doi: 10.1016/j.automatica.2020.108981.
|
[62]
|
X. Li, X. Yang and T. Huang, Persistence of delayed cooperative models: Impulsive control method, Appl. Math. Comput., 342 (2019), 130-146.
doi: 10.1016/j.amc.2018.09.003.
|
[63]
|
X. Li, X. Yang and S. Song, Lyapunov conditions for finite-time stability of time-varying time-delay systems, Automatica J. IFAC, 103 (2019), 135-140.
doi: 10.1016/j.automatica.2019.01.031.
|
[64]
|
X. Li, X. Zhang and S. Song, Effect of delayed impulses on input-to-state stability of nonlinear systems, Automatica J. IFAC, 76 (2017), 378-382.
doi: 10.1016/j.automatica.2016.08.009.
|
[65]
|
X. Li and Y. Zhao, Sliding mode control for linear impulsive systems with matched disturbances, IEEE Transactions on Automatic Control.
doi: 10.1109/TAC.2021.3129735.
|
[66]
|
D. Lin, X. Li and D. O'Regan, $\mu$-stability of infinite delay functional differential systems with impulsive effects, Appl. Anal., 92 (2013), 15-26.
doi: 10.1080/00036811.2011.584185.
|
[67]
|
B. Liu, D. J. Hill and Z. Sun, Stabilisation to input-to-state stability for continuous-time dynamical systems via event-triggered impulsive control with three levels of events, IET Control Theory Appl., 12 (2018), 1167-1179.
doi: 10.1049/iet-cta.2017.0820.
|
[68]
|
B. Liu, X. Liu, G. Chen and H. Wang, Robust impulsive synchronization of uncertain dynamical networks, IEEE Trans. Circuits Syst. I. Regul. Pap., 52 (2005), 1431-1441.
doi: 10.1109/TCSI.2005.851708.
|
[69]
|
B. Liu, Z. Sun, Y. Luo and Y. Zhong, Uniform synchronization for chaotic dynamical systems via event-triggered impulsive control, Phys. A, 531 (2019), 121725, 14 pp.
doi: 10.1016/j.physa.2019.121725.
|
[70]
|
B. Liu, B. Xu and T. Liu, Almost sure contraction for stochastic switched impulsive systems, IEEE Trans. Automat. Control, 66 (2021), 5393-5400.
doi: 10.1109/TAC.2020.3047554.
|
[71]
|
J. Liu and X. Li, Impulsive stabilization of high-order nonlinear retarded differential equations, Appl. Math., 58 (2013), 347-367.
doi: 10.1007/s10492-013-0017-3.
|
[72]
|
K. Liu, A. Selivanov and E. Fridman, Survey on time-delay approach to networked control, Annu. Rev. Control, 48 (2019), 57-79.
doi: 10.1016/j.arcontrol.2019.06.005.
|
[73]
|
W. Liu, J. Sun, G. Wang and J. Chen, Quantized impulsive control of linear systems under bounded disturbances and DoS attacks, IEEE Transactions on Control of Network Systems.
doi: 10.1109/TCNS.2021.3085759.
|
[74]
|
X. Liu, Practical stabilization of control systems with impulse effects, J. Math. Anal. Appl., 166 (1992), 563-576.
doi: 10.1016/0022-247X(92)90315-5.
|
[75]
|
X. Liu, Stability of impulsive control systems with time delay, Math. Comput. Modelling, 39 (2004), 511-519.
doi: 10.1016/S0895-7177(04)90522-5.
|
[76]
|
X. Liu and G. Ballinger, Uniform asymptotic stability of impulsive delay differential equations, Comput. Math. Appl., 41 (2001), 903-915.
doi: 10.1016/S0898-1221(00)00328-X.
|
[77]
|
X. Liu and G. Ballinger, On boundedness of solutoins for impulsive systems in terms of two measures, Nonlinear World, 4 (1997), 417-434.
|
[78]
|
X. Liu and G. Ballinger, Existence and continuability of solutions for differential equations with delays and state-dependent impulses, Nonlinear Anal., 51 (2002), 633-647.
doi: 10.1016/S0362-546X(01)00847-1.
|
[79]
|
X. Liu and K. Rohlf, Impulsive control of a Lotka-Volterra system, IMA J. Math. Control Inform., 15 (1998), 269-284.
doi: 10.1093/imamci/15.3.269.
|
[80]
|
X. Liu and K. Zhang, Synchronization of linear dynamical networks on time scales: Pinning control via delayed impulses, Automatica J. IFAC, 72 (2016), 147-152.
doi: 10.1016/j.automatica.2016.06.001.
|
[81]
|
X. Liu and K. Zhang, Input-to-state stability of time-delay systems with delay-dependent impulses, IEEE Trans. Automat. Control, 65 (2020), 1676-1682.
doi: 10.1109/TAC.2019.2930239.
|
[82]
|
X. Liu, K. Zhang and W.-C. Xie, Consensus seeking in multi-agent systems via hybrid protocols with impulse delays, Nonlinear Anal. Hybrid Syst., 25 (2017), 90-98.
doi: 10.1016/j.nahs.2017.03.002.
|
[83]
|
Y. Liu, S. Zhao and J. Lu, A new fuzzy impulsive control of chaotic systems based on T–S fuzzy model, IEEE Transactions on Fuzzy Systems, 19 (2011), 393-398.
doi: 10.1109/TFUZZ.2010.2090162.
|
[84]
|
Z.-W. Liu, G. Wen, X. Yu, Z.-H. Guan and T. Huang, Delayed impulsive control for consensus of multiagent systems with switching communication graphs, IEEE Transactions on Cybernetics, 50 (2020), 3045-3055.
doi: 10.1109/TCYB.2019.2926115.
|
[85]
|
J. Lu, D. W. C. Ho and J. Cao, A unified synchronization criterion for impulsive dynamical networks, Automatica J. IFAC, 46 (2010), 1215-1221.
doi: 10.1016/j.automatica.2010.04.005.
|
[86]
|
J. Lu, D. W. C. Ho, J. Cao and J. Kurths, Exponential synchronization of linearly coupled neural networks with impulsive disturbances, IEEE Transactions on Neural Networks, 22 (2011), 329-336.
doi: 10.1109/TNN.2010.2101081.
|
[87]
|
S. Luo, F. Deng and W.-H. Chen, Stability and stabilization of linear impulsive systems with large impulse-delays: A stabilizing delay perspective, Automatica J. IFAC, 127 (2021), 109533, 7 pp.
doi: 10.1016/j.automatica.2021.109533.
|
[88]
|
X. Lv, J. Cao, X. Li, M. Abdel-Aty and U. A. Al-Juboori, Synchronization analysis for complex dynamical networks with coupling delay via event-triggered delayed impulsive control, IEEE Transactions on Cybernetics, 51 (2021), 5269-5278.
doi: 10.1109/TCYB.2020.2974315.
|
[89]
|
X. Lv and X. Li, Finite time stability and controller design for nonlinear impulsive sampled-data systems with applications, ISA Transactions, 70 (2017), 30-36.
doi: 10.1016/j.isatra.2017.07.025.
|
[90]
|
J. L. Mancilla-Aguilar, H. Haimovich and P. Feketa, Uniform stability of nonlinear time-varying impulsive systems with eventually uniformly bounded impulse frequency, Nonlinear Anal. Hybrid Syst., 38 (2020), 100933, 16 pp.
doi: 10.1016/j.nahs.2020.100933.
|
[91]
|
P. Naghshtabrizi, J. P. Hespanha and A. R. Teel, Exponential stability of impulsive systems with application to uncertain sampled-data systems, Systems Control Lett., 57 (2008), 378-385.
doi: 10.1016/j.sysconle.2007.10.009.
|
[92]
|
S. G. Nersesov and W. M. Haddad, Finite-time stabilization of nonlinear impulsive dynamical systems, Nonlinear Anal. Hybrid Syst., 2 (2008), 832-845.
doi: 10.1016/j.nahs.2007.12.001.
|
[93]
|
S.-I. Niculescu, Delay Effects on Stability: A Robust Control Approach, vol. 269, Springer-Verlag London, Ltd., London, 2001.
|
[94]
|
S. Peng and F. Deng, New criteria on $p$th moment input-to-state stability of impulsive stochastic delayed differential systems, IEEE Trans. Automat. Control, 62 (2017), 3573-3579.
doi: 10.1109/TAC.2017.2660066.
|
[95]
|
R. Rakkiyappan, P. Balasubramaniam and J. Cao, Global exponential stability results for neutral-type impulsive neural networks, Nonlinear Anal. Real World Appl., 11 (2010), 122-130.
doi: 10.1016/j.nonrwa.2008.10.050.
|
[96]
|
W. Ren and J. Xiong, Vector-Lyapunov-function-based input-to-state stability of stochastic impulsive switched time-delay systems, IEEE Trans. Automat. Control, 64 (2019), 654-669.
|
[97]
|
W. Ren and J. Xiong, Stability analysis of impulsive switched time-delay systems with state-dependent impulses, IEEE Trans. Automat. Control, 64 (2019), 3928-3935.
doi: 10.1109/TAC.2018.2890768.
|
[98]
|
W. Ren and J. Xiong, Stability analysis of stochastic impulsive switched systems with deterministic state-dependent impulses and switches, SIAM J. Control Optim., 59 (2021), 2068-2092.
doi: 10.1137/20M1353460.
|
[99]
|
H. Ríos, L. Hetel and D. Efimov, Nonlinear impulsive systems: 2D stability analysis approach, Automatica J. IFAC, 80 (2017), 32-40.
doi: 10.1016/j.automatica.2017.01.010.
|
[100]
|
H. Ríos, L. Hetel and D. Efimov, Robust output-feedback control for uncertain linear sampled-data systems: A 2D impulsive system approach, Nonlinear Anal. Hybrid Syst., 32 (2019), 177-201.
doi: 10.1016/j.nahs.2018.11.005.
|
[101]
|
J. Shen and J. Li, Existence and global attractivity of positive periodic solutions for impulsive predator–prey model with dispersion and time delays, Nonlinear Anal. Real World Appl., 10 (2009), 227-243.
doi: 10.1016/j.nonrwa.2007.08.026.
|
[102]
|
Q. Song and J. Zhang, Global exponential stability of impulsive Cohen–Grossberg neural network with time-varying delays, Nonlinear Anal. Real World Appl., 9 (2008), 500-510.
doi: 10.1016/j.nonrwa.2006.11.015.
|
[103]
|
G. Stamov, E. Gospodinova and I. Stamova, Practical exponential stability with respect to $h-$manifolds of discontinuous delayed cohen–grossberg neural networks with variable impulsive perturbations, Mathematical Modelling and Control, 1 (2021), 26-34.
doi: 10.3934/mmc.2021003.
|
[104]
|
G. T. Stamov and I. M. Stamova, Almost periodic solutions for impulsive neural networks with delay, Applied Mathematical Modelling, 31 (2007), 1263-1270.
doi: 10.1016/j.apm.2006.04.008.
|
[105]
|
J. Sun, Q.-L. Han and X. Jiang, Impulsive control of time-delay systems using delayed impulse and its application to impulsive master–slave synchronization, Phys. Lett. A, 372 (2008), 6375-6380.
doi: 10.1016/j.physleta.2008.08.067.
|
[106]
|
X. Tan, J. Cao and X. Li, Consensus of leader-following multiagent systems: A distributed event-triggered impulsive control strategy, IEEE Transactions on Cybernetics, 49 (2019), 792-801.
doi: 10.1109/TCYB.2017.2786474.
|
[107]
|
Y. Tang, H. Gao, W. Zhang and J. Kurths, Leader-following consensus of a class of stochastic delayed multi-agent systems with partial mixed impulses, Automatica J. IFAC, 53 (2015), 346-354.
doi: 10.1016/j.automatica.2015.01.008.
|
[108]
|
Y. Tang, X. Wu, P. Shi and F. Qian, Input-to-state stability for nonlinear systems with stochastic impulses, Automatica J. IFAC, 113 (2020), 108766, 12 pp.
doi: 10.1016/j.automatica.2019.108766.
|
[109]
|
Y. Tang, X. Xing, H. R. Karimi, L. Kocarev and J. Kurths, Tracking control of networked multi-agent systems under new characterizations of impulses and its applications in robotic systems, IEEE Transactions on Industrial Electronics, 63 (2016), 1299-1307.
doi: 10.1109/TIE.2015.2453412.
|
[110]
|
L. Wang and X. Li, $\mu$-stability of impulsive differential systems with unbounded time-varying delays and nonlinear perturbations, Math. Methods Appl. Sci., 36 (2013), 1140-1446.
doi: 10.1002/mma.2696.
|
[111]
|
X. Wang, C. Li, T. Huang and X. Pan, Impulsive control and synchronization of nonlinear system with impulse time window, Nonlinear Dynam., 78 (2014), 2837-2845.
doi: 10.1007/s11071-014-1629-1.
|
[112]
|
Y. Wang and J. Lu, Some recent results of analysis and control for impulsive systems, Commun. Nonlinear Sci. Numer. Simul., 80 (2020), 104862, 15 pp.
doi: 10.1016/j.cnsns.2019.104862.
|
[113]
|
Y. Wang, J. Lu, X. Li and J. Liang, Synchronization of coupled neural networks under mixed impulsive effects: A novel delay inequality approach, Neural Networks, 127 (2020), 38-46.
doi: 10.1016/j.neunet.2020.04.002.
|
[114]
|
Y. Wang, J. Lu and Y. Lou, Halanay-type inequality with delayed impulses and its applications, Sci. China Inf. Sci., 62 (2019), 192206, 10 pp.
doi: 10.1007/s11432-018-9809-y.
|
[115]
|
T. Wei, X. Xie and X. Li, Persistence and periodicity of survival red blood cells model with time-varying delays and impulses, Mathematical Modelling and Control, 1 (2021), 12-25.
doi: 10.3934/mmc.2021002.
|
[116]
|
S. Wu, X. Sun, X. Li and H. Wang, On controllability and observability of impulsive control systems with delayed impulses, Math. Comput. Simulation, 171 (2020), 65-78.
doi: 10.1016/j.matcom.2019.03.013.
|
[117]
|
X. Wu, P. Shi, Y. Tang and W. Zhang, Input-to-state stability of nonlinear stochastic time-varying systems with impulsive effects, Internat. J. Robust Nonlinear Control, 27 (2017), 1792-1809.
doi: 10.1002/rnc.3637.
|
[118]
|
X. Wu, Y. Tang and W. Zhang, Input-to-state stability of impulsive stochastic delayed systems under linear assumptions, Automatica J. IFAC, 66 (2016), 195-204.
doi: 10.1016/j.automatica.2016.01.002.
|
[119]
|
X. Wu, L. Yan, W. Zhang and Y. Tang, Exponential stability of stochastic differential delay systems with delayed impulse effects, J. Math. Phys., 52 (2011), 092702, 14 pp.
doi: 10.1063/1.3638037.
|
[120]
|
D. Xu and Z. Yang, Impulsive delay differential inequality and stability of neural networks, J. Math. Anal. Appl., 305 (2005), 107-120.
doi: 10.1016/j.jmaa.2004.10.040.
|
[121]
|
D. Xu, Z. Yang and Z. Yang, Exponential stability of nonlinear impulsive neutral differential equations with delays, Nonlinear Anal., 67 (2007), 1426-1439.
doi: 10.1016/j.na.2006.07.043.
|
[122]
|
F. Xu, L. Dong, D. Wang, X. Li and R. Rakkiyappan, Globally exponential stability of nonlinear impulsive switched systems, Math. Notes, 97 (2015), 803-810.
doi: 10.1134/S0001434615050156.
|
[123]
|
Z. Xu, X. Li and P. Duan, Synchronization of complex networks with time-varying delay of unknown bound via delayed impulsive control, Neural Networks, 125 (2020), 224-232.
doi: 10.1016/j.neunet.2020.02.003.
|
[124]
|
Z. Xu, X. Li and V. Stojanovic, Exponential stability of nonlinear state-dependent delayed impulsive systems with applications, Nonlinear Anal. Hybrid Syst., 42 (2021), 101088, 12 pp.
doi: 10.1016/j.nahs.2021.101088.
|
[125]
|
T. Yang, Impulsive Control Theory, vol. 272, Springer-Verlag, Berlin, 2001.
|
[126]
|
X. Yang, J. Cao and J. Lu, Stochastic synchronization of complex networks with nonidentical nodes via hybrid adaptive and impulsive control, IEEE Trans. Circuits Syst. I. Regul. Pap., 59 (2012), 371-384.
doi: 10.1109/TCSI.2011.2163969.
|
[127]
|
X. Yang, J. Cao and J. Lu, Synchronization of delayed complex dynamical networks with impulsive and stochastic effects, Nonlinear Anal. Real World Appl., 12 (2011), 2252-2266.
doi: 10.1016/j.nonrwa.2011.01.007.
|
[128]
|
X. Yang, J. Cao and J. Qiu, Pth moment exponential stochastic synchronization of coupled memristor-based neural networks with mixed delays via delayed impulsive control, Neural Networks, 65 (2015), 80-91.
|
[129]
|
X. Yang and X. Li, Finite-time stability of nonlinear impulsive systems with applications to neural networks, IEEE Transactions on Neural Networks and Learning Systems.
doi: 10.1109/TNNLS.2021.3093418.
|
[130]
|
X. Yang, X. Li, Q. Xi and P. Duan, Review of stability and stabilization for impulsive delayed systems, Math. Biosci. Eng., 15 (2018), 1495-1515.
doi: 10.3934/mbe.2018069.
|
[131]
|
X. Yang, C. Li, Q. Song, H. Li and J. Huang, Effects of state-dependent impulses on robust exponential stability of quaternion-valued neural networks under parametric uncertainty, IEEE Trans. Neural Netw. Learn. Syst., 30 (2019), 2197-2211.
doi: 10.1109/TNNLS.2018.2877152.
|
[132]
|
X. Yang and J. Lu, Finite-time synchronization of coupled networks with markovian topology and impulsive effects, IEEE Trans. Automat. Control, 61 (2016), 2256-2261.
doi: 10.1109/TAC.2015.2484328.
|
[133]
|
X. Yang, J. Lu, D. W. C. Ho and Q. Song, Synchronization of uncertain hybrid switching and impulsive complex networks, Appl. Math. Model., 59 (2018), 379-392.
doi: 10.1016/j.apm.2018.01.046.
|
[134]
|
X. Yang, Z. Yang and X. Nie, Exponential synchronization of discontinuous chaotic systems via delayed impulsive control and its application to secure communication, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 1529-1543.
doi: 10.1016/j.cnsns.2013.09.012.
|
[135]
|
Z. Yang and D. Xu, Stability analysis of delay neural networks with impulsive effects, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 13 (2006), 563-573.
|
[136]
|
Z. Yang and D. Xu, Stability analysis and design of impulsive control systems with time delay, IEEE Trans. Automat. Control, 52 (2007), 1448-1454.
doi: 10.1109/TAC.2007.902748.
|
[137]
|
H. Zhang, Z.-H. Guan and G. Feng, Reliable dissipative control for stochastic impulsive systems, Automatica J. IFAC, 44 (2008), 1004-1010.
doi: 10.1016/j.automatica.2007.08.018.
|
[138]
|
H. Zhang, T. Ma, G.-B. Huang and Z. Wang, Robust global exponential synchronization of uncertain chaotic delayed neural networks via dual-stage impulsive control, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 40 (2010), 831-844.
doi: 10.1109/TSMCB.2009.2030506.
|
[139]
|
K. Zhang and E. Braverman, Time-delay systems with delayed impulses: A unified criterion on asymptotic stability, Automatica J. IFAC, 125 (2021), 109470, 8 pp.
doi: 10.1016/j.automatica.2020.109470.
|
[140]
|
L. Zhang, X. Yang, C. Xu and J. Feng, Exponential synchronization of complex-valued complex networks with time-varying delays and stochastic perturbations via time-delayed impulsive control, Appl. Math. Comput., 306 (2017), 22-30.
doi: 10.1016/j.amc.2017.02.004.
|
[141]
|
W. Zhang, Y. Tang, J.-A. Fang and X. Wu, Stability of delayed neural networks with time-varying impulses, Neural Networks, 36 (2012), 59-63.
doi: 10.1016/j.neunet.2012.08.014.
|
[142]
|
X. Zhang and C. Li, Finite-time stability of nonlinear systems with state-dependent delayed impulses, Nonlinear Dynamics, 102 (2020), 197-210.
doi: 10.1007/s11071-020-05953-4.
|
[143]
|
X. Zhang, C. Li and H. Li, Finite-time stabilization of nonlinear systems via impulsive control with state-dependent delay, J. Franklin Inst., 359 (2022), 1196-1214.
doi: 10.1016/j.jfranklin.2021.11.013.
|
[144]
|
Y. Zhang and J. Sun, Stability of impulsive neural networks with time delays, Physics Letters A, 348 (2005), 44-50.
doi: 10.1016/j.physleta.2005.08.030.
|
[145]
|
Y. Zhang, J. Sun and G. Feng, Impulsive control of discrete systems with time delay, IEEE Trans. Automat. Control, 54 (2009), 871-875.
doi: 10.1109/TAC.2008.2010968.
|
[146]
|
Y. Zhao, X. Li and J. Cao, Global exponential stability for impulsive systems with infinite distributed delay based on flexible impulse frequency, Appl. Math. Comput., 386 (2020), 125467, 10 pp.
doi: 10.1016/j.amc.2020.125467.
|
[147]
|
Y. Zhou, H. Zhang and Z. Zeng, Quasi-synchronization of delayed memristive neural networks via a hybrid impulsive control, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51 (2021), 1954-1965.
doi: 10.1109/TSMC.2019.2911366.
|
[148]
|
C. Zhu, X. Li and J. Cao, Finite-time ${H}_\infty$ dynamic output feedback control for nonlinear impulsive switched systems, Nonlinear Anal. Hybrid Syst., 39 (2021), 100975, 13 pp.
doi: 10.1016/j.nahs.2020.100975.
|
[149]
|
W. Zhu, D. Wang, L. Liu and G. Feng, Event-based impulsive control of continuous-time dynamic systems and its application to synchronization of memristive neural networks, IEEE Trans. Neural Netw. Learn. Syst., 29 (2018), 3599-3609.
doi: 10.1109/TNNLS.2017.2731865.
|