[1]
|
J. W. Brewer, Kronecker products and matrix calculus in system theory. Special issue on the mathematical foundations of system theory, IEEE Trans. Circuits and Systems, 25 (1978), 772-781.
doi: 10.1109/TCS.1978.1084534.
|
[2]
|
X. K. Cao, M. Fečkan, D. Shen and J. Wang, Iterative learning control for multi-agent systems with impulsive consensus tracking, Nonlinear Anal. Model. Control, 26 (2021), 130-150.
doi: 10.15388/namc.2021.26.20981.
|
[3]
|
B. B. Chang, X. W. Mu, Z. Yang and J. Y. Fang, Event-based secure consensus of muti-agent systems under asynchronous DoS attacks, Applied Mathematics and Computation, 401 (2021), 126120, 11 pp.
doi: 10.1016/j.amc.2021.126120.
|
[4]
|
G. Chen, L. Y. Wang, C. Chen and G. Yin, Critical connectivity and fastest convergence rates of distributed consensus with switching topologies and additive noises, IEEE Trans. Automat. Control, 62 (2017), 6152-6167.
doi: 10.1109/TAC.2017.2696824.
|
[5]
|
Z. Y. Chen, Y. Liu, W. He, H. Qiao and H. Ji, Adaptive-neural-network-based trajectory tracking control for a nonholonomic wheeled mobile robot with velocity constraints, IEEE Transactions on Industrial Electronics, 68 (2021), 5057-5067.
doi: 10.1109/TIE.2020.2989711.
|
[6]
|
O. L. V. Costa and M. D. Fragoso, Stability results for discrete-time linear systems with Markovian jumping parameters, J. Math. Anal. Appl., 179 (1993), 154-178.
doi: 10.1006/jmaa.1993.1341.
|
[7]
|
D. R. Ding, Z. D. Wang, Q. L. Han and G. L. Wei, Security control for discrete-time stochastic nonlinear systems subject to deception attacks, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48 (2018), 779-789.
doi: 10.1109/TSMC.2016.2616544.
|
[8]
|
L. Ding, S. Li, Y.-J. Liu, H. Gao, C. Chao and Z. Deng, Adaptive neural network-based tracking control for full-state constrained wheeled mobile robotic system, IEEE Transactions on Systems Man Cybernetics: Systems, 47 (2017), 2410-2419.
doi: 10.1109/TSMC.2017.2677472.
|
[9]
|
T. Dong and Y. L. Gong, Leader-following secure consensus for second-order multi-agent systems with nonlinear dynamics and event-triggered control strategy under DoS attack, Neurocomputing, 416 (2020), 95-102.
doi: 10.1016/j.neucom.2019.01.113.
|
[10]
|
X. Q. Feng, Y. C. Yang and D. X. Wei, Adaptive fully distributed consensus for a class of heterogeneous nonlinear multi-agent systems, Neurocomputing, 428 (2021), 12-18.
doi: 10.1016/j.neucom.2020.11.043.
|
[11]
|
M. D. Fragoso and O. L. V. Costa, A unified approach for stochastic and mean square stability of continuous-time linear systems with Markovian jumping parameters and additive disturbances, SIAM J. Control Optim., 44 (2005), 1165-1191.
doi: 10.1137/S0363012903434753.
|
[12]
|
R. Hou, L. Z. Cui, X. H. Bu and J. Q. Yang, Distributed formation control for multiple non-holonomic wheeled mobile robots with velocity constraint by using improved data-driven iterative learning, Applied Mathematics and Computation, 395 (2021), 125829, 15 pp.
doi: 10.1016/j.amc.2020.125829.
|
[13]
|
N. Huang, Z. S. Duan and Y. Zhao, Consensus of multi-agent systems via delayed and intermittent communications, IET Control Theory and Applications, 9 (2015), 62-73.
doi: 10.1049/iet-cta.2014.0729.
|
[14]
|
B.-Y. Kim and H.-S. Ahn, Distributed coordination and control for a freeway traffic network using consensus algorithms, IEEE Systems Journal, 10 (2016), 162-168.
doi: 10.1109/JSYST.2014.2318054.
|
[15]
|
M. L. Li and F. Q. Deng, Necessary and sufficient conditions for consensus of continuous-time multiagent systems with Markovian switching topologies and communication noises, IEEE Transactions on Cybernetics, 50 (2020), 3264-3270.
doi: 10.1109/TCYB.2019.2919740.
|
[16]
|
S. Li, Z. Li, J. Li, T. Fernando, H. Ho-Ching Iu, Q. Wang and X. Liu, Application of event-triggered cubature Kalman filter for remote nonlinear state estimation in wireless sensor network, IEEE Transactions on Industrial Electronics, 68 (2021), 5133-5145.
doi: 10.1109/TIE.2020.2987279.
|
[17]
|
S. E. Li, Z. Wang, Y. Zheng, D. Yang and K. You, Stability of general linear dynamic multi-agent systems under switching topologies with positive real eigenvalues, Engineering, 6 (2020), 688-694.
doi: 10.1016/j.eng.2020.05.006.
|
[18]
|
X. D. Li, D. W. C. Ho and J. D. Cao, Finite-time stability and settling-time estimation of nonlinear impulsive systems, Automatica J. IFAC, 99 (2019), 361-368.
doi: 10.1016/j.automatica.2018.10.024.
|
[19]
|
X. D. Li and P. Li, Stability of time-delay systems with impulsive control involving stabilizing delays, Automatica J. IFAC, 124 (2021), 109336, 6 pp.
doi: 10.1016/j.automatica.2020.109336.
|
[20]
|
X. D. Li, D. X. Peng and J. D. Cao, Lyapunov stability for impulsive systems via event-triggered impulsive control, IEEE Transactions on Automatic Control, 65 (2020), 4908-4913.
doi: 10.1109/TAC.2020.2964558.
|
[21]
|
X. D. Li, S. J. Song and J. H. Wu, Exponential stability of nonlinear systems with delayed impulses and applications, IEEE Transactions on Automatic Control, 64 (2019), 4024-4034.
doi: 10.1109/TAC.2019.2905271.
|
[22]
|
X. D. Li, X. Y. Yang and S. J. Song, Lyapunov conditions for finite-time stability of time-varying time-delay systems, Automatica J. IFAC, 103 (2019), 135-140.
doi: 10.1016/j.automatica.2019.01.031.
|
[23]
|
X. D. Li, X. Y. Yang and J. D. Cao, Event-triggered impulsive control for nonlinear delay systems, Automatica J. IFAC, 117 (2020), 108981, 7 pp.
doi: 10.1016/j.automatica.2020.108981.
|
[24]
|
X. D. Li, H. T. Zhu and S. J. Song, Input-to-state stability of nonlinear systems using observer-based event-triggered impulsive control, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51 (2021), 6892-6900.
doi: 10.1109/TSMC.2020.2964172.
|
[25]
|
Z. Y. Li and Y. G. Liu, Consensus of vehicle platoon with the hidden layer against stochastic noise, Proceedings of the 38th Chinese Control Conference, (2019).
doi: 10.23919/ChiCC.2019.8865730.
|
[26]
|
C. Y. Liu, X. Q. Wu, X. X. Wan and J. H. Lu, Time-varying output formation tracking of heterogeneous linear multi-agent systems with dynamical controllers, Neurocomputing, 441 (2021), 36-43.
doi: 10.1016/j.neucom.2021.01.113.
|
[27]
|
J. Liu, Q. Shao and C. C. Hua, Consensus-based cubature information filtering for sensor networks with incomplete measurements, Neurocomputing, 364 (2019), 49-62.
doi: 10.1016/j.neucom.2019.07.030.
|
[28]
|
D. Luo, J. Wang and D. Shen, Consensus tracking problem for linear fractional multi-agent systems with initial state error, Nonlinear Anal. Model. Control, 25 (2020), 766-785.
doi: 10.15388/namc.2020.25.18128.
|
[29]
|
D. Luo, J. Wang and D. Shen, $PD^{\alpha}$-type distributed learning control for nonlinear fractional-order multi-agent systems, Math. Methods Appl. Sci., 42 (2019), 4543-4553.
doi: 10.1002/mma.5677.
|
[30]
|
D. Luo, J. Wang and D. Shen, Learning formation control for fractional-order multiagent systems, Math. Methods Appl. Sci., 41 (2018), 5003-5014.
doi: 10.1002/mma.4948.
|
[31]
|
X. Mao, Stochastic Differential Equations and Application, Second edition, Horwood Publishing Limited, Chichester, 2008.
doi: 10.1533/9780857099402.
|
[32]
|
S. X. Miao and H. S. Su, Second-order consensus of multiagent systems with matrix-weighted network, Neurocomputing, 433 (2021), 1-9.
doi: 10.1016/j.neucom.2020.12.056.
|
[33]
|
N. K. Mu, X. F. Liao and T. W. Huang, Consensus of second-order multi-agent systems with random sampling via event-triggered control, J. Franklin Inst., 353 (2016), 1423-1435.
doi: 10.1016/j.jfranklin.2016.01.014.
|
[34]
|
H. Neudecker, Some theorems on matrix differentiation with special reference to Kronecker matrix products, Journal of the American Statistical Association, 327 (2012), 953-963.
doi: 10.1080/01621459.1969.10501027.
|
[35]
|
H. Q. Pei and Q. Lai, Consensus of second-order multiagent systems with directed signed networks and communication delays, Complexity, 2020 (2020), 1712643, 10 pp.
doi: 10.1155/2020/1712643.
|
[36]
|
W. Z. Qiu and J. Wang, Iterative learning control for multi-agent systems with noninstantaneous impulsive consensus tracking, Internat. J. Robust Nonlinear Control, 31 (2021), 6507-6524.
doi: 10.1002/rnc.5627.
|
[37]
|
W. Ren and E. Atkins, Distributed multi-vehicle coordinated control via local information exchange, Internat. J. Robust Nonlinear Control, 17 (2007), 1002-1033.
doi: 10.1002/rnc.1147.
|
[38]
|
M. Sader, Z. Q. Chen, Z. X. Liu and C. Deng, Distributed robust fault-tolerant consensus control for a class of nonlinear multi-agent systems with intermittent communications, Applied Mathematics and Computation, 403 (2021), 126166, 15 pp.
doi: 10.1016/j.amc.2021.126166.
|
[39]
|
Y. Shang, C. L. Liu and K. C. Cao, Event-triggered consensus control of nonlinear multi-agent systems based on first-order hold, International Journal of Control Automation and Systems, 19 (2021), 1461-1469.
doi: 10.1007/s12555-020-0145-y.
|
[40]
|
Y. C. Si and J. Wang, Relative controllability of multi-agent systems with pairwise different delays in states, Nonlinear Anal. Model. Control, 27 (2022), 289-307.
doi: 10.15388/namc.2022.27.25333.
|
[41]
|
F. L. Sun, C. Y. Lei and J. Kurths, Consensus of heterogeneous discrete-time multi-agent systems with noise over Markov switching topologies, Internat. J. Robust Nonlinear Control, 31 (2021), 1530-1541.
doi: 10.1002/rnc.5360.
|
[42]
|
H. Sun, Y. G. Liu and F. Z. Li, Distributed optimal consensus of second-order multi-agent systems, Science China-Information Sciences, 64 (2021), 209201, 3 pp.
doi: 10.1007/s11432-018-9879-3.
|
[43]
|
S. S. Tian, Y. X. Li, Y. L. Kang and J. N. Xia, Multi-robot path planning in wireless sensor networks based on jump mechanism PSO and safety gap obstacle avoidance, Future Generation Computer Systems-The International Journal of Escience, 118 (2021), 37-47.
doi: 10.1016/j.future.2020.12.012.
|
[44]
|
C. Wang, C. L. Liu and S. Liu, Robust fixed-time connectivity-preserving consensus for second-order multi-agent systems with external disturbances, IET Control Theory and Applications, 14 (2020), 2674-2681.
doi: 10.1049/iet-cta.2019.1487.
|
[45]
|
C. Y. Wang, H. Tnunay, Z. Zuo, B. Lennox and Z. Ding, Fixed-time formation control of multirobot systems: Design and experiments, IEEE Transactions on Industrial Electronics, 66 (2019), 6292-6301.
doi: 10.1109/TIE.2018.2870409.
|
[46]
|
M. Wang and T. Zhang, Leader-following formation control of second-order nonlinear systems with time-varying communication delay, International Journal of Control Automation and Systems, 19 (2021), 1729-1739.
doi: 10.1007/s12555-019-0759-0.
|
[47]
|
Z. M. Wang, H. F. Sun, H. S. Zhang and X. Y. Liu, Bounded consensus control for stochastic multi-agent systems with additive noises, Neurocomputing, 408 (2020), 72-79.
doi: 10.1016/j.neucom.2019.11.027.
|
[48]
|
T. D. Wei, X. Xie and X. D. Li, Persistence and periodicity of survival red blood cells model with time-varying delays and impulses, Mathematical Modelling and Control, 1 (2021), 12-25.
doi: 10.3934/mmc.2021002.
|
[49]
|
C. K. Wong, C. Cai and B. G. Heydecker, Adaptive traffic signal control using approximate dynamic programming, Transportation Research Part C: Emerging Technologies, 17 (2009), 456-474.
doi: 10.1016/j.trc.2009.04.005.
|
[50]
|
S. T. Yang and B. Yang, A semi-decentralized feudal multi-agent learned-goal algorithm for multi-intersection traffic signal control, Knowledge-Based Systems, 213 (2021), 106708, 15 pp.
doi: 10.1016/j.knosys.2020.106708.
|
[51]
|
Y. Yang, Y. F. Li, D. Yue, Y. C. Tian and X. H. Ding, Distributed secure consensus control with event-triggering for multiagent systems under DoS attacks, IEEE Transactions on Cybernetics, 51 (2021), 2916-2928.
doi: 10.1109/TCYB.2020.2979342.
|
[52]
|
K. Y. You, Z. K. Li and L. H. Xie, Consensus condition for linear multi-agent systems over randomly switching topologies, Automatica, 49 (2013), 3125-3132.
doi: 10.1016/j.automatica.2013.07.024.
|
[53]
|
S. Yuan, C. P. Yu and J. Sun, Adaptive event-triggered consensus control of linear multi-agent systems with cyber attacks, Neurocomputing, 442 (2021), 1-9.
doi: 10.1016/j.neucom.2021.02.040.
|
[54]
|
H. Zhang, X. Zhou, H. Yan and J. Sun, Adaptive consensus-based distributed target tracking with dynamic cluster in sensor networks, IEEE Transactions on Cybernetics, 49 (2019), 1580-1591.
doi: 10.1109/TCYB.2018.2805717.
|
[55]
|
J. Zhang, H. G. Zhang, Y. L. Cai and W. H. Li, Containment control of general linear multi-agent systems by event-triggered control mechanisms, Neurocomputing, 433 (2021), 263-274.
doi: 10.1016/j.neucom.2020.11.008.
|
[56]
|
Y. Zhang and Y. P. Tian, Consentability and protocol design of multi agent systems with stochastic switching topology, Automatica J. IFAC, 45 (2009), 1195-1201.
doi: 10.1016/j.automatica.2008.11.005.
|
[57]
|
Y. Y. Zhang, R. F. Li and X. M. Huo, Stochastic consensus of discrete-time second-order multi-agent systems with measurement noises and time delays, Journal of the Franklin Institute, 355 (2018), 2791-2807.
doi: 10.1016/j.jfranklin.2018.01.015.
|
[58]
|
X. F. Zong, T. Li and J. F. Zhang, Consensus conditions of continuous-time multi-agent systems with additive and multiplicative measurement noises, SIAM Journal on Control and Optimization, 56 (2018), 19-52.
doi: 10.1137/15M1019775.
|
[59]
|
X. F. Zong, T. Li and J. F. Zhang, Consensus of nonlinear multi-agent systems with multiplicative noises and time-varying delays, IEEE Conference on Decision and Control, (2018), 5415-5420.
doi: 10.1109/CDC.2018.8618969.
|