August  2022, 15(8): 2215-2232. doi: 10.3934/dcdss.2022091

Two phase flows of compressible viscous fluids

1. 

Institute of Mathematics of the Academy of Sciences of the Czech Republic, Žitná 25, CZ-115 67 Praha 1, Czech Republic

2. 

IMATH, EA 2134, Université de Toulon, BP 20132, 83957 La Garde, France

* Corresponding author: Eduard Feireisl

Received  July 2021 Revised  March 2022 Published  August 2022 Early access  April 2022

Fund Project: The work of E.F. was supported by the Czech Sciences Foundation (GAČR), Grant Agreement 21–02411S.

We introduce a new concept of dissipative varifold solution to models of two phase compressible viscous fluids. In contrast with the existing approach based on the Young measure description, the new formulation is variational combining the energy and momentum balance in a single inequality. We show the existence of dissipative varifold solutions for a large class of general viscous fluids with non–linear dependence of the viscous stress on the symmetric velocity gradient.

Citation: Eduard Feireisl, Antonín Novotný. Two phase flows of compressible viscous fluids. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 2215-2232. doi: 10.3934/dcdss.2022091
References:
[1]

A. AbbatielloE. Feireisl and A. Novotný, Generalized solutions to models of compressible viscous fluids, Discrete Contin. Dyn. Syst., 41 (2021), 1-28.  doi: 10.3934/dcds.2020345.

[2]

H. Abels, On generalized solutions of two-phase flows for viscous incompressible fluids, Interfaces Free Bound., bf 9 (2007), 31–65. doi: 10.4171/IFB/155.

[3]

H. Abels, On the notion of generalized solutions of viscous incompressible two-phase flows, In Kyoto Conference on the Navier-Stokes Equations and their Applications, RIMS Kôkyûroku Bessatsu, B1, pages 1–19. Res. Inst. Math. Sci. (RIMS), Kyoto, 2007.

[4]

D. M. AmbroseM. C. Lopes FilhoH. J. Nussenzveig Lopes and W. A. Strauss, Transport of interfaces with surface tension by 2D viscous flows, Interfaces Free Bound., 12 (2010), 23-44.  doi: 10.4171/IFB/225.

[5]

H. A. Barnes, Shear-Thickening ("Dilatancy") in suspensions on nonaggregating solidparticles dispersed in Newtonian liquids, J. Rheology, 33 (1989), 329-366. 

[6]

M. BulíčekP. GwiazdaJ. Málek and A. Świerczewska-Gwiazda, On unsteady flows of implicitly constituted incompressible fluids, SIAM J. Math. Anal., 44 (2012), 2756-2801.  doi: 10.1137/110830289.

[7]

I. Denisova and V. A. Solonnikov, Local and Global Solvability of Free Boundary Value Problems Near Equalibria, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, Vol. 2 eds. Y. Giga, A. Novotny, Springer, 2018. doi: 10.1007/978-3-319-13344-7.

[8]

R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98 (1989), 511-547.  doi: 10.1007/BF01393835.

[9]

E. FeireislX. Liao and J. Málek, Global weak solutions to a class of non-Newtonian compressible fluids, Math. Meth. Appl. Sci., 38 (2015), 3482-3494.  doi: 10.1002/mma.3432.

[10]

J. Fischer and S. Hensel, Weak–strong uniqueness for the Navier–Stokes equation for two fluids with surface tension, Arch. Rational Mech. Anal., 236 (2020), 967-1087.  doi: 10.1007/s00205-019-01486-2.

[11]

P. I. Plotnikov, Generalized solutions of a problem on the motion of a non-Newtonian fluid with a free boundary, Sibirsk. Mat. Zh., 34 (1993), 127–141, iii, ix. doi: 10.1007/BF00975173.

[12]

P. I. Plotnikov, Varifold solutions of a free boundary problem in viscous fluid dynamics, In Free Boundary Problems in Fluid Flow with Applications (Montreal, PQ, 1990), volume 282 of Pitman Res. Notes Math. Ser., pages 28–32. Longman Sci. Tech., Harlow, 1993.

[13]

P. I. Plotnikov, Compressible Stokes flow driven by capillarity on a free surface, In Navier-Stokes Equations and Related Nonlinear Problems (Palanga, 1997), pages 217–238. VSP, Utrecht, 1998.

[14]

J.-F. Rodrigues, On the mathematical analysis of thick fluids, J. Math. Sci. (N.Y.), 210 (2015), 835-848.  doi: 10.1007/s10958-015-2594-z.

show all references

References:
[1]

A. AbbatielloE. Feireisl and A. Novotný, Generalized solutions to models of compressible viscous fluids, Discrete Contin. Dyn. Syst., 41 (2021), 1-28.  doi: 10.3934/dcds.2020345.

[2]

H. Abels, On generalized solutions of two-phase flows for viscous incompressible fluids, Interfaces Free Bound., bf 9 (2007), 31–65. doi: 10.4171/IFB/155.

[3]

H. Abels, On the notion of generalized solutions of viscous incompressible two-phase flows, In Kyoto Conference on the Navier-Stokes Equations and their Applications, RIMS Kôkyûroku Bessatsu, B1, pages 1–19. Res. Inst. Math. Sci. (RIMS), Kyoto, 2007.

[4]

D. M. AmbroseM. C. Lopes FilhoH. J. Nussenzveig Lopes and W. A. Strauss, Transport of interfaces with surface tension by 2D viscous flows, Interfaces Free Bound., 12 (2010), 23-44.  doi: 10.4171/IFB/225.

[5]

H. A. Barnes, Shear-Thickening ("Dilatancy") in suspensions on nonaggregating solidparticles dispersed in Newtonian liquids, J. Rheology, 33 (1989), 329-366. 

[6]

M. BulíčekP. GwiazdaJ. Málek and A. Świerczewska-Gwiazda, On unsteady flows of implicitly constituted incompressible fluids, SIAM J. Math. Anal., 44 (2012), 2756-2801.  doi: 10.1137/110830289.

[7]

I. Denisova and V. A. Solonnikov, Local and Global Solvability of Free Boundary Value Problems Near Equalibria, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, Vol. 2 eds. Y. Giga, A. Novotny, Springer, 2018. doi: 10.1007/978-3-319-13344-7.

[8]

R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98 (1989), 511-547.  doi: 10.1007/BF01393835.

[9]

E. FeireislX. Liao and J. Málek, Global weak solutions to a class of non-Newtonian compressible fluids, Math. Meth. Appl. Sci., 38 (2015), 3482-3494.  doi: 10.1002/mma.3432.

[10]

J. Fischer and S. Hensel, Weak–strong uniqueness for the Navier–Stokes equation for two fluids with surface tension, Arch. Rational Mech. Anal., 236 (2020), 967-1087.  doi: 10.1007/s00205-019-01486-2.

[11]

P. I. Plotnikov, Generalized solutions of a problem on the motion of a non-Newtonian fluid with a free boundary, Sibirsk. Mat. Zh., 34 (1993), 127–141, iii, ix. doi: 10.1007/BF00975173.

[12]

P. I. Plotnikov, Varifold solutions of a free boundary problem in viscous fluid dynamics, In Free Boundary Problems in Fluid Flow with Applications (Montreal, PQ, 1990), volume 282 of Pitman Res. Notes Math. Ser., pages 28–32. Longman Sci. Tech., Harlow, 1993.

[13]

P. I. Plotnikov, Compressible Stokes flow driven by capillarity on a free surface, In Navier-Stokes Equations and Related Nonlinear Problems (Palanga, 1997), pages 217–238. VSP, Utrecht, 1998.

[14]

J.-F. Rodrigues, On the mathematical analysis of thick fluids, J. Math. Sci. (N.Y.), 210 (2015), 835-848.  doi: 10.1007/s10958-015-2594-z.

[1]

M. Bulíček, F. Ettwein, P. Kaplický, Dalibor Pražák. The dimension of the attractor for the 3D flow of a non-Newtonian fluid. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1503-1520. doi: 10.3934/cpaa.2009.8.1503

[2]

Li Fang, Zhenhua Guo. Zero dissipation limit to rarefaction wave with vacuum for a one-dimensional compressible non-Newtonian fluid. Communications on Pure and Applied Analysis, 2017, 16 (1) : 209-242. doi: 10.3934/cpaa.2017010

[3]

Hafedh Bousbih. Global weak solutions for a coupled chemotaxis non-Newtonian fluid. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 907-929. doi: 10.3934/dcdsb.2018212

[4]

Linfang Liu, Tomás Caraballo, Xianlong Fu. Exponential stability of an incompressible non-Newtonian fluid with delay. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4285-4303. doi: 10.3934/dcdsb.2018138

[5]

Takayuki Kubo, Yoshihiro Shibata, Kohei Soga. On some two phase problem for compressible and compressible viscous fluid flow separated by sharp interface. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3741-3774. doi: 10.3934/dcds.2016.36.3741

[6]

Jong Yeoul Park, Jae Ug Jeong. Pullback attractors for a $2D$-non-autonomous incompressible non-Newtonian fluid with variable delays. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2687-2702. doi: 10.3934/dcdsb.2016068

[7]

Guowei Liu, Rui Xue. Pullback dynamic behavior for a non-autonomous incompressible non-Newtonian fluid. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2193-2216. doi: 10.3934/dcdsb.2018231

[8]

Jin Li, Jianhua Huang. Dynamics of a 2D Stochastic non-Newtonian fluid driven by fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2483-2508. doi: 10.3934/dcdsb.2012.17.2483

[9]

Aneta Wróblewska-Kamińska. Local pressure methods in Orlicz spaces for the motion of rigid bodies in a non-Newtonian fluid with general growth conditions. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1417-1425. doi: 10.3934/dcdss.2013.6.1417

[10]

Zhenhua Guo, Wenchao Dong, Jinjing Liu. Large-time behavior of solution to an inflow problem on the half space for a class of compressible non-Newtonian fluids. Communications on Pure and Applied Analysis, 2019, 18 (4) : 2133-2161. doi: 10.3934/cpaa.2019096

[11]

Yukun Song, Yang Chen, Jun Yan, Shuai Chen. The existence of solutions for a shear thinning compressible non-Newtonian models. Electronic Research Archive, 2020, 28 (1) : 47-66. doi: 10.3934/era.2020004

[12]

María Anguiano, Francisco Javier Suárez-Grau. Newtonian fluid flow in a thin porous medium with non-homogeneous slip boundary conditions. Networks and Heterogeneous Media, 2019, 14 (2) : 289-316. doi: 10.3934/nhm.2019012

[13]

Mohamed Tij, Andrés Santos. Non-Newtonian Couette-Poiseuille flow of a dilute gas. Kinetic and Related Models, 2011, 4 (1) : 361-384. doi: 10.3934/krm.2011.4.361

[14]

Changli Yuan, Mojdeh Delshad, Mary F. Wheeler. Modeling multiphase non-Newtonian polymer flow in IPARS parallel framework. Networks and Heterogeneous Media, 2010, 5 (3) : 583-602. doi: 10.3934/nhm.2010.5.583

[15]

Barbara Lee Keyfitz, Richard Sanders, Michael Sever. Lack of hyperbolicity in the two-fluid model for two-phase incompressible flow. Discrete and Continuous Dynamical Systems - B, 2003, 3 (4) : 541-563. doi: 10.3934/dcdsb.2003.3.541

[16]

Long Fan, Cheng-Jie Liu, Lizhi Ruan. Local well-posedness of solutions to the boundary layer equations for compressible two-fluid flow. Electronic Research Archive, 2021, 29 (6) : 4009-4050. doi: 10.3934/era.2021070

[17]

Xin Liu, Yongjin Lu, Xin-Guang Yang. Stability and dynamics for a nonlinear one-dimensional full compressible non-Newtonian fluids. Evolution Equations and Control Theory, 2021, 10 (2) : 365-384. doi: 10.3934/eect.2020071

[18]

Jin Lai, Huanyao Wen, Lei Yao. Vanishing capillarity limit of the non-conservative compressible two-fluid model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1361-1392. doi: 10.3934/dcdsb.2017066

[19]

Muhammad Mansha Ghalib, Azhar Ali Zafar, Zakia Hammouch, Muhammad Bilal Riaz, Khurram Shabbir. Analytical results on the unsteady rotational flow of fractional-order non-Newtonian fluids with shear stress on the boundary. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 683-693. doi: 10.3934/dcdss.2020037

[20]

Lan Huang, Zhiying Sun, Xin-Guang Yang, Alain Miranville. Global behavior for the classical solution of compressible viscous micropolar fluid with cylinder symmetry. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1595-1620. doi: 10.3934/cpaa.2022033

2021 Impact Factor: 1.865

Article outline

[Back to Top]