\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Eventual differentiability of coupled wave equations with local Kelvin-Voigt damping

  • * Corresponding author: Ahmed Bchatnia

    * Corresponding author: Ahmed Bchatnia 
Abstract Full Text(HTML) Related Papers Cited by
  • In this work, we consider a coupled wave equations with partially and locally distributed Kelvin-Voigt damping, where only one equation is dissipative.

    Under the assumption that the damping coefficient changes smoothly near the interface of the damped and undamped regions, we investigate the effectiveness of the indirect control, and we prove that the associated semigroup is eventually differential.

    Mathematics Subject Classification: Primary: 93D15, 93D20; Secondary: 35B40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] F. AlabauP. Cannarsa and V. Komornik, Indirect internal stabilization of weakly coupled evolution equations, J. Evol. Equ., 2 (2002), 127-150.  doi: 10.1007/s00028-002-8083-0.
    [2] F. Ammar-Khodja and A. Bader, Stability of systems of one dimensional wave equations by internal or boundary control force, SIAM J. Control Optim., 39 (2001), 1833-1851.  doi: 10.1137/S0363012900366613.
    [3] K. AmmariF. Hassine and L. Robbiano, Stabilization for the wave equation with singular Kelvin-Voigt damping, Archive for Rational Mechanics and analysis, 236 (2020), 577-601.  doi: 10.1007/s00205-019-01476-4.
    [4] K. AmmariZ. Liu and F. Shel, Stability of the wave equations on a tree with local Kelvin-Voigt damping, Semigroup Forum, 100 (2020), 364-382.  doi: 10.1007/s00233-019-10064-7.
    [5] A. Bchatnia and N. Souayeh, Indirect stability of coupled wave equations with local Kelvin-Voigt damping, preprint.
    [6] A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Math. Ann., 347 (2010), 455-478.  doi: 10.1007/s00208-009-0439-0.
    [7] K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194. Springer-Verlag, New York, 2000.
    [8] F. Hassine and N. Souayeh, Stability for coupled waves with locally disturbed Kelvin-Voigt damping, Semigroup Forum, 102 (2021), 134-159.  doi: 10.1007/s00233-020-10142-1.
    [9] F. L. Huang, Characteristic conditions for exponential stability of linear dynamical systems in Hilbert space, Ann. Differential Equations, 1 (1985), 43-56. 
    [10] T. Kato, Perturbation Theory for Linear Operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995.
    [11] K. LiuZ. Liu and Q. Ahang, Eventual differentiability of a string, with local Kelvin-voigt damping, ESAIM: control and Calculus of Variations, 23 (2017), 443-454.  doi: 10.1051/cocv/2015055.
    [12] K. Liu and B. Rao, Exponential stability for the wave equation with local Kelvin-Voigt damping, Z. Angew. Math. Phys., 57 (2006), 419-432.  doi: 10.1007/s00033-005-0029-2.
    [13] Z. Liu and B. Rao, Characterization of polynomial decay rate for the solution of linear evolution equation, Z. Angew. Math. Phys., 56 (2005), 630-644.  doi: 10.1007/s00033-004-3073-4.
    [14] Z. Liu and Q. Zhang, Stability of a string with local Kelvin-Voigt damping and non-smooth coefficient at interface, SIAM J. Control Optim., 54 (2016), 1859-1871.  doi: 10.1137/15M1049385.
    [15] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.
    [16] J. Prüss, On the spectrum of $C_0$-semigroups, Trans. Amer. Math. Soc., 248 (1984), 847-857.  doi: 10.2307/1999112.
    [17] M. Renardy, On localized Kelvin-Voigt damping, Z. Angew Math. Mech., 84 (2004), 280-283.  doi: 10.1002/zamm.200310100.
    [18] D. L. Russell, A general framework for the study of indirect damping mechanisms in elastic systems, Math. Anal. Appl., 173 (1993), 339-358.  doi: 10.1006/jmaa.1993.1071.
    [19] L. Tebou, A constructive method for the stabilization of the wave equation with localized Kelvin-Voigt damping, C. R. Math. Acad. Sci. Paris, 350 (2012), 603-608.  doi: 10.1016/j.crma.2012.06.005.
  • 加载中
SHARE

Article Metrics

HTML views(129) PDF downloads(127) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return