
-
Previous Article
A quantitative strong unique continuation property of a diffusive SIS model
- DCDS-S Home
- This Issue
-
Next Article
Well-posedness and stability for semilinear wave-type equations with time delay
Local indirect stabilization of same coupled evolution systems through resolvent estimates
University of Sousse, ESSTHS, LAMMDA, Tunisia |
In this paper, we consider same systems of two coupled equations (wave-wave, Schrödinger-Schrödinger) in a bounded domain. Only one of the two equations is directly damped by a localized damping term (indirect stabilization). Under geometric control conditions on both coupling and damping regions (internal or boundary), we establish the energy decay rate by means of a suitable resolvent estimate. The numerical contribution is interpreted to confirm the theoretical result of a wave-wave system.
References:
[1] |
F. Alabau,
Stabilisation frontière indirecte de systéme, C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), 1015-1020.
doi: 10.1016/S0764-4442(99)80316-4. |
[2] |
F. Alabau, P. Cannarsa and V. Komornik,
Indirect internal stabilisation of weakly coupled evolution equations, Journal of Evolution Equation, 2 (2002), 127-150.
doi: 10.1007/s00028-002-8083-0. |
[3] |
F. Alabau-Boussouira, R. Brockett, O. Glass, J. le Rousseau and E. Zuazua, Control of Partial Differential Equations, Lecture Notes in Mathematics, 2048. Fondazione CIME/CIME Foundation Subseries, Springer, Heidelberg, Fondazione C.I.M.E., Florence, 2012.
doi: 10.1007/978-3-642-27893-8. |
[4] |
F. Alabau-Boussouira, Z. Wang and L. Yu,
A one-step optimal energy decay formula for indirectly nonlinearly damped hyperbolic systems coupled by velocities, ESAIM Control Optim. Calc. Var., 23 (2017), 721-749.
doi: 10.1051/cocv/2016011. |
[5] |
L. Aloui and M. Daoulatli,
Stabilization of two coupled wave equations on a compact manifold with boundary, J. Math. Anal. Appl., 436 (2016), 944-969.
doi: 10.1016/j.jmaa.2015.12.014. |
[6] |
F. Ammar-Khodja and A. Bader,
Stability of systems of one dimensional wave equations by internal or boundary control force, SIAM J. Control Optim., 39 (2001), 127.
|
[7] |
C. Bardos, G. Lebeau and J. Rauch,
Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.
doi: 10.1137/0330055. |
[8] |
M. Bassam, D. Mercier, S. Nicaise and A. Wehbe,
Stabilisation frontière indirecte du système de Timoshenko, C. R. Math. Acad. Sci. Paris, 349 (2011), 379-384.
doi: 10.1016/j.crma.2011.03.011. |
[9] |
A. Borichev and Y. Tomilov,
Optimal polynomial decay of functions and operator semigroups, Mathematische Annalen, 347 (2010), 455-478.
doi: 10.1007/s00208-009-0439-0. |
[10] |
L. Gearhart,
Spectral theory for contraction semigroups on Hilbert space, Trans. Amer. Math. Soc., 236 (1978), 385-394.
doi: 10.1090/S0002-9947-1978-0461206-1. |
[11] |
T.-E. Ghoul, M. Khenissi and B. Said-Houari,
On the stability of the Bresse system with frictional damping, J. Math. Anal. Appl., 455 (2017), 1870-1898.
doi: 10.1016/j.jmaa.2017.04.027. |
[12] |
R. Guglielmi,
Indirect stabilization of hyperbolic systems through resolvent estimates, Evol. Equ. Control Theory, 6 (2017), 59-75.
doi: 10.3934/eect.2017004. |
[13] |
F. L. Huang,
Strong asymptotic stability of linear dynamical systems in Banach spaces, Journal of Differential Equations, 104 (1993), 307-324.
doi: 10.1006/jdeq.1993.1074. |
[14] |
B. Jacop and H. Zwart,
On the Hautus test for exponentially stable ${\rm{C}}_{0}$-groups, SIAM J. Control Optim., 48 (2009), 1275-1288.
doi: 10.1137/080724733. |
[15] |
B. Kapitonov,
Stabilization and simultaneous boundary controllability for a class of evolution systems, Comput. Appl. Math., 17 (1998), 149-160.
|
[16] |
B. V. Kapitonov,
Uniform stabilization and simultaneous exact boundary controllability for a pair of hyperbolic systems, Siberian Math. J., 35 (1994), 722-734.
doi: 10.1007/BF02106615. |
[17] |
B. V. Kapitonov,
Uniform stabilization and exact controllability for a class of coupled hyperbolic systems, Mat. Apl. Comput., 15 (1996), 199-212.
|
[18] |
C. Kassema, A. Mortada, L. Toufayli and A. Wehbe,
Local indirect stabilization of N–d system of two coupled wave equations under geometric conditions, Comptes Rendus Mathematique, 357 (2019), 494-512.
|
[19] |
G. Lebeau,
Équation des ondes amorties, Algebraic and Geometric Methods in Mathematical Physics, Math. Phys. Stud., Kluwer Acad. Publ., Dordrecht, 19 (1996), 73-109.
|
[20] |
G. Lebeau and L. Robbiano.,
Stabilisation de l'équation des ondes par le bord, Duke Math. J., 86 (1997), 465-491.
|
[21] |
K. Liu,
Locally distributed control and damping for the conservative systems, Journal on Control and Optimization, 35 (1997), 1574-1590.
|
[22] |
W.-J. Liu and E. Zuazua,
Uniform stabilization of the higher-dimensional system of thermoelasticity with a nonlinear boundary feedback, Quarterly of Applied Mathematics, 59 (2001), 269-314.
doi: 10.1090/qam/1828455. |
[23] |
Z. Liu and B. Rao,
Energy decay rate of the thermoelastic Bresse system, Zeitschrift für Angewandte Mathematik und Physik, 60 (2009), 54-69.
|
[24] |
M. Negreanu and E. Zuazua,
Uniform boundary controlability of a discrete 1-D wave equation, Systems Control Lett., 48 (2003), 261-279.
doi: 10.1016/S0167-6911(02)00271-2. |
[25] |
A. Pazy, Semigroups of Linear Operator and applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[26] |
J. Prüss,
On the spectrum of ${\rm{C}}_{0}$ semigroups, Transactions of the American Mathematical Society, 284 (1984), 847-857.
|
[27] |
D. L. Russell,
A general framework for the study of indirect damping mechanisms in elastic systems, J. Math. Anal. Appl., 173 (1993), 339-354.
doi: 10.1006/jmaa.1993.1071. |
[28] |
L. Tebou,
Energy decay estimates for some weakly coupled Euler-Bernoulli and wave equations with indirect damping mechanisms, Math. Control Relat. Fields, 2 (2012), 45-60.
doi: 10.3934/mcrf.2012.2.45. |
show all references
References:
[1] |
F. Alabau,
Stabilisation frontière indirecte de systéme, C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), 1015-1020.
doi: 10.1016/S0764-4442(99)80316-4. |
[2] |
F. Alabau, P. Cannarsa and V. Komornik,
Indirect internal stabilisation of weakly coupled evolution equations, Journal of Evolution Equation, 2 (2002), 127-150.
doi: 10.1007/s00028-002-8083-0. |
[3] |
F. Alabau-Boussouira, R. Brockett, O. Glass, J. le Rousseau and E. Zuazua, Control of Partial Differential Equations, Lecture Notes in Mathematics, 2048. Fondazione CIME/CIME Foundation Subseries, Springer, Heidelberg, Fondazione C.I.M.E., Florence, 2012.
doi: 10.1007/978-3-642-27893-8. |
[4] |
F. Alabau-Boussouira, Z. Wang and L. Yu,
A one-step optimal energy decay formula for indirectly nonlinearly damped hyperbolic systems coupled by velocities, ESAIM Control Optim. Calc. Var., 23 (2017), 721-749.
doi: 10.1051/cocv/2016011. |
[5] |
L. Aloui and M. Daoulatli,
Stabilization of two coupled wave equations on a compact manifold with boundary, J. Math. Anal. Appl., 436 (2016), 944-969.
doi: 10.1016/j.jmaa.2015.12.014. |
[6] |
F. Ammar-Khodja and A. Bader,
Stability of systems of one dimensional wave equations by internal or boundary control force, SIAM J. Control Optim., 39 (2001), 127.
|
[7] |
C. Bardos, G. Lebeau and J. Rauch,
Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.
doi: 10.1137/0330055. |
[8] |
M. Bassam, D. Mercier, S. Nicaise and A. Wehbe,
Stabilisation frontière indirecte du système de Timoshenko, C. R. Math. Acad. Sci. Paris, 349 (2011), 379-384.
doi: 10.1016/j.crma.2011.03.011. |
[9] |
A. Borichev and Y. Tomilov,
Optimal polynomial decay of functions and operator semigroups, Mathematische Annalen, 347 (2010), 455-478.
doi: 10.1007/s00208-009-0439-0. |
[10] |
L. Gearhart,
Spectral theory for contraction semigroups on Hilbert space, Trans. Amer. Math. Soc., 236 (1978), 385-394.
doi: 10.1090/S0002-9947-1978-0461206-1. |
[11] |
T.-E. Ghoul, M. Khenissi and B. Said-Houari,
On the stability of the Bresse system with frictional damping, J. Math. Anal. Appl., 455 (2017), 1870-1898.
doi: 10.1016/j.jmaa.2017.04.027. |
[12] |
R. Guglielmi,
Indirect stabilization of hyperbolic systems through resolvent estimates, Evol. Equ. Control Theory, 6 (2017), 59-75.
doi: 10.3934/eect.2017004. |
[13] |
F. L. Huang,
Strong asymptotic stability of linear dynamical systems in Banach spaces, Journal of Differential Equations, 104 (1993), 307-324.
doi: 10.1006/jdeq.1993.1074. |
[14] |
B. Jacop and H. Zwart,
On the Hautus test for exponentially stable ${\rm{C}}_{0}$-groups, SIAM J. Control Optim., 48 (2009), 1275-1288.
doi: 10.1137/080724733. |
[15] |
B. Kapitonov,
Stabilization and simultaneous boundary controllability for a class of evolution systems, Comput. Appl. Math., 17 (1998), 149-160.
|
[16] |
B. V. Kapitonov,
Uniform stabilization and simultaneous exact boundary controllability for a pair of hyperbolic systems, Siberian Math. J., 35 (1994), 722-734.
doi: 10.1007/BF02106615. |
[17] |
B. V. Kapitonov,
Uniform stabilization and exact controllability for a class of coupled hyperbolic systems, Mat. Apl. Comput., 15 (1996), 199-212.
|
[18] |
C. Kassema, A. Mortada, L. Toufayli and A. Wehbe,
Local indirect stabilization of N–d system of two coupled wave equations under geometric conditions, Comptes Rendus Mathematique, 357 (2019), 494-512.
|
[19] |
G. Lebeau,
Équation des ondes amorties, Algebraic and Geometric Methods in Mathematical Physics, Math. Phys. Stud., Kluwer Acad. Publ., Dordrecht, 19 (1996), 73-109.
|
[20] |
G. Lebeau and L. Robbiano.,
Stabilisation de l'équation des ondes par le bord, Duke Math. J., 86 (1997), 465-491.
|
[21] |
K. Liu,
Locally distributed control and damping for the conservative systems, Journal on Control and Optimization, 35 (1997), 1574-1590.
|
[22] |
W.-J. Liu and E. Zuazua,
Uniform stabilization of the higher-dimensional system of thermoelasticity with a nonlinear boundary feedback, Quarterly of Applied Mathematics, 59 (2001), 269-314.
doi: 10.1090/qam/1828455. |
[23] |
Z. Liu and B. Rao,
Energy decay rate of the thermoelastic Bresse system, Zeitschrift für Angewandte Mathematik und Physik, 60 (2009), 54-69.
|
[24] |
M. Negreanu and E. Zuazua,
Uniform boundary controlability of a discrete 1-D wave equation, Systems Control Lett., 48 (2003), 261-279.
doi: 10.1016/S0167-6911(02)00271-2. |
[25] |
A. Pazy, Semigroups of Linear Operator and applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[26] |
J. Prüss,
On the spectrum of ${\rm{C}}_{0}$ semigroups, Transactions of the American Mathematical Society, 284 (1984), 847-857.
|
[27] |
D. L. Russell,
A general framework for the study of indirect damping mechanisms in elastic systems, J. Math. Anal. Appl., 173 (1993), 339-354.
doi: 10.1006/jmaa.1993.1071. |
[28] |
L. Tebou,
Energy decay estimates for some weakly coupled Euler-Bernoulli and wave equations with indirect damping mechanisms, Math. Control Relat. Fields, 2 (2012), 45-60.
doi: 10.3934/mcrf.2012.2.45. |
[1] |
Louis Tebou. Energy decay estimates for some weakly coupled Euler-Bernoulli and wave equations with indirect damping mechanisms. Mathematical Control and Related Fields, 2012, 2 (1) : 45-60. doi: 10.3934/mcrf.2012.2.45 |
[2] |
Jong Yeoul Park, Sun Hye Park. On uniform decay for the coupled Euler-Bernoulli viscoelastic system with boundary damping. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 425-436. doi: 10.3934/dcds.2005.12.425 |
[3] |
Denis Mercier, Virginie Régnier. Decay rate of the Timoshenko system with one boundary damping. Evolution Equations and Control Theory, 2019, 8 (2) : 423-445. doi: 10.3934/eect.2019021 |
[4] |
Mohammad Akil, Ibtissam Issa, Ali Wehbe. Energy decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping. Mathematical Control and Related Fields, 2021 doi: 10.3934/mcrf.2021059 |
[5] |
Roberto Guglielmi. Indirect stabilization of hyperbolic systems through resolvent estimates. Evolution Equations and Control Theory, 2017, 6 (1) : 59-75. doi: 10.3934/eect.2017004 |
[6] |
Fatiha Alabau-Boussouira, Piermarco Cannarsa, Roberto Guglielmi. Indirect stabilization of weakly coupled systems with hybrid boundary conditions. Mathematical Control and Related Fields, 2011, 1 (4) : 413-436. doi: 10.3934/mcrf.2011.1.413 |
[7] |
Ryo Ikehata, Shingo Kitazaki. Optimal energy decay rates for some wave equations with double damping terms. Evolution Equations and Control Theory, 2019, 8 (4) : 825-846. doi: 10.3934/eect.2019040 |
[8] |
Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations and Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37 |
[9] |
Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361 |
[10] |
Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399 |
[11] |
Abdelaziz Soufyane, Belkacem Said-Houari. The effect of the wave speeds and the frictional damping terms on the decay rate of the Bresse system. Evolution Equations and Control Theory, 2014, 3 (4) : 713-738. doi: 10.3934/eect.2014.3.713 |
[12] |
A. F. Almeida, M. M. Cavalcanti, J. P. Zanchetta. Exponential decay for the coupled Klein-Gordon-Schrödinger equations with locally distributed damping. Communications on Pure and Applied Analysis, 2018, 17 (5) : 2039-2061. doi: 10.3934/cpaa.2018097 |
[13] |
Zhong-Jie Han, Zhuangyi Liu, Jing Wang. Sharper and finer energy decay rate for an elastic string with localized Kelvin-Voigt damping. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1455-1467. doi: 10.3934/dcdss.2022031 |
[14] |
Takeshi Taniguchi. Exponential boundary stabilization for nonlinear wave equations with localized damping and nonlinear boundary condition. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1571-1585. doi: 10.3934/cpaa.2017075 |
[15] |
Huafei Di, Yadong Shang, Jiali Yu. Existence and uniform decay estimates for the fourth order wave equation with nonlinear boundary damping and interior source. Electronic Research Archive, 2020, 28 (1) : 221-261. doi: 10.3934/era.2020015 |
[16] |
Mohammad Akil, Haidar Badawi. The influence of the physical coefficients of a Bresse system with one singular local viscous damping in the longitudinal displacement on its stabilization. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2022004 |
[17] |
Jing Zhang. The analyticity and exponential decay of a Stokes-wave coupling system with viscoelastic damping in the variational framework. Evolution Equations and Control Theory, 2017, 6 (1) : 135-154. doi: 10.3934/eect.2017008 |
[18] |
Vo Anh Khoa, Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence, blow-up and exponential decay of solutions for a porous-elastic system with damping and source terms. Evolution Equations and Control Theory, 2019, 8 (2) : 359-395. doi: 10.3934/eect.2019019 |
[19] |
Jason S. Howell, Irena Lasiecka, Justin T. Webster. Quasi-stability and exponential attractors for a non-gradient system---applications to piston-theoretic plates with internal damping. Evolution Equations and Control Theory, 2016, 5 (4) : 567-603. doi: 10.3934/eect.2016020 |
[20] |
Moez Daoulatli. Rates of decay for the wave systems with time dependent damping. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 407-443. doi: 10.3934/dcds.2011.31.407 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]