-
Previous Article
A unified framework for optimal control of fractional in time subdiffusive semilinear PDEs
- DCDS-S Home
- This Issue
-
Next Article
Preface
Convergence of a nonlocal to a local diffuse interface model for two-phase flow with unmatched densities
1. | Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany |
2. | Graduate School of Mathematics, Nagoya University, Furocho Chikusaku, Nagoya, 464-8602, Japan |
We prove convergence of suitable subsequences of weak solutions of a diffuse interface model for the two-phase flow of incompressible fluids with different densities with a nonlocal Cahn-Hilliard equation to weak solutions of the corresponding system with a standard "local" Cahn-Hilliard equation. The analysis is done in the case of a sufficiently smooth bounded domain with no-slip boundary condition for the velocity and Neumann boundary conditions for the Cahn-Hilliard equation. The proof is based on the corresponding result in the case of a single Cahn-Hilliard equation and compactness arguments used in the proof of existence of weak solutions for the diffuse interface model.
References:
[1] |
H. Abels,
Existence of weak solutions for a diffuse interface model for viscous, incompressible fluids with general densities, Comm. Math. Phys., 289 (2009), 45-73.
doi: 10.1007/s00220-009-0806-4. |
[2] |
H. Abels, S. Bosia and M. Grasselli,
Cahn-Hilliard equation with nonlocal singular free energies, Ann. Mat. Pura Appl., 194 (2015), 1071-1106.
doi: 10.1007/s10231-014-0411-9. |
[3] |
H. Abels, D. Depner and H. Garcke,
Existence of weak solutions for a diffuse interface model for two-phase flows of incompressible fluids with different densities, J. Math. Fluid Mech., 15 (2013), 453-480.
doi: 10.1007/s00021-012-0118-x. |
[4] |
H. Abels, H. Garcke and G. Grün, Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities, Math. Models Methods Appl. Sci., 22 (2012), 1150013, 40 pp.
doi: 10.1142/S0218202511500138. |
[5] |
H. Abels and Y. Terasawa,
Weak solutions for a diffuse interface model for two-phase flows of incompressible fluids with different densities and nonlocal free energies, Math. Methods Appl. Sci., 43 (2020), 3200-3219.
doi: 10.1002/mma.6111. |
[6] |
H. Abels and J. Weber,
Local well-posedness of a quasi-incompressible two-phase flow, J. Evol. Equ., 21 (2021), 3477-3502.
doi: 10.1007/s00028-020-00646-2. |
[7] |
E. Davoli, H. Ranetbauer, L. Scarpa and L. Trussardi,
Degenerate nonlocal Cahn-Hilliard equations: Well-posedness, regularity and local asymptotics, Ann. Inst. H. Poincaré Anal. Non Linéaire, 37 (2020), 627-651.
doi: 10.1016/j.anihpc.2019.10.002. |
[8] |
E. Davoli, L. Scarpa and L. Trussardi,
Local asymptotics for nonlocal convective Cahn-Hilliard equations with $W^{1, 1}$ kernel and singular potential, J. Differential Equations, 289 (2021), 35-58.
doi: 10.1016/j.jde.2021.04.016. |
[9] |
E. Davoli, L. Scarpa and L. Trussardi,
Nonlocal-to-local convergence of Cahn-Hilliard equations: Neumann boundary conditions and viscosity terms, Arch. Ration. Mech. Anal., 239 (2021), 117-149.
doi: 10.1007/s00205-020-01573-9. |
[10] |
S. Frigeri,
Global existence of weak solutions for a nonlocal model for two-phase flows of incompressible fluids with unmatched densities, Math. Models Methods Appl. Sci., 26 (2016), 1955-1993.
doi: 10.1142/S0218202516500494. |
[11] |
S. Frigeri,
On a nonlocal Cahn-Hilliard/Navier-Stokes system with degenerate mobility and singular potential for incompressible fluids with different densities, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 38 (2021), 647-687.
doi: 10.1016/j.anihpc.2020.08.005. |
[12] |
S. Frigeri, C. G. Gal and and M. Grasselli,
Regularity results for the nonlocal Cahn-Hilliard equation with singular potential and degenerate mobility, J. Differential Equations, 287 (2021), 295-328.
doi: 10.1016/j.jde.2021.03.052. |
[13] |
C. G. Gal, M. Grasselli and H. Wu,
Global weak solutions to a diffuse interface model for incompressible two-phase flows with moving contact lines and different densities, Arch. Ration. Mech. Anal., 234 (2019), 1-56.
doi: 10.1007/s00205-019-01383-8. |
[14] |
A. Giorgini, Well-posedness of the two-dimensional Abels-Garcke-Grün model for two-phase flows with unmatched densities, Calc. Var. Partial Differential Equations, 60 (2021), Paper No. 100, 40 pp.
doi: 10.1007/s00526-021-01962-2. |
[15] |
Z. Liang,
On the existence of weak solutions to non-local Cahn-Hilliard/Navier-Stokes equations and its local asymptotics, Commun. Math. Sci., 18 (2020), 2121-2147.
doi: 10.4310/CMS.2020.v18.n8.a2. |
[16] |
S. Melchionna, H. Ranetbauer, L. Scarpa and L. Trussardi,
From nonlocal to local Cahn-Hilliard equation, Adv. Math. Sci. Appl., 28 (2019), 197-211.
|
[17] |
A. C. Ponce,
An estimate in the spirit of Poincaré's inequality, J. Eur. Math. Soc. (JEMS), 6 (2004), 1-15.
|
[18] |
A. C. Ponce,
A new approach to Sobolev spaces and connections to $\Gamma$-convergence, Calc. Var. Partial Differential Equations, 19 (2004), 229-255.
doi: 10.1007/s00526-003-0195-z. |
[19] |
J. Weber, Analysis of Diffuse Interface Models for Two-Phase Flows with and without Surfactants, Ph.D thesis, University Regensburg, urn: nbn: de: bvb: 355-epub-342471, 2016. |
show all references
References:
[1] |
H. Abels,
Existence of weak solutions for a diffuse interface model for viscous, incompressible fluids with general densities, Comm. Math. Phys., 289 (2009), 45-73.
doi: 10.1007/s00220-009-0806-4. |
[2] |
H. Abels, S. Bosia and M. Grasselli,
Cahn-Hilliard equation with nonlocal singular free energies, Ann. Mat. Pura Appl., 194 (2015), 1071-1106.
doi: 10.1007/s10231-014-0411-9. |
[3] |
H. Abels, D. Depner and H. Garcke,
Existence of weak solutions for a diffuse interface model for two-phase flows of incompressible fluids with different densities, J. Math. Fluid Mech., 15 (2013), 453-480.
doi: 10.1007/s00021-012-0118-x. |
[4] |
H. Abels, H. Garcke and G. Grün, Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities, Math. Models Methods Appl. Sci., 22 (2012), 1150013, 40 pp.
doi: 10.1142/S0218202511500138. |
[5] |
H. Abels and Y. Terasawa,
Weak solutions for a diffuse interface model for two-phase flows of incompressible fluids with different densities and nonlocal free energies, Math. Methods Appl. Sci., 43 (2020), 3200-3219.
doi: 10.1002/mma.6111. |
[6] |
H. Abels and J. Weber,
Local well-posedness of a quasi-incompressible two-phase flow, J. Evol. Equ., 21 (2021), 3477-3502.
doi: 10.1007/s00028-020-00646-2. |
[7] |
E. Davoli, H. Ranetbauer, L. Scarpa and L. Trussardi,
Degenerate nonlocal Cahn-Hilliard equations: Well-posedness, regularity and local asymptotics, Ann. Inst. H. Poincaré Anal. Non Linéaire, 37 (2020), 627-651.
doi: 10.1016/j.anihpc.2019.10.002. |
[8] |
E. Davoli, L. Scarpa and L. Trussardi,
Local asymptotics for nonlocal convective Cahn-Hilliard equations with $W^{1, 1}$ kernel and singular potential, J. Differential Equations, 289 (2021), 35-58.
doi: 10.1016/j.jde.2021.04.016. |
[9] |
E. Davoli, L. Scarpa and L. Trussardi,
Nonlocal-to-local convergence of Cahn-Hilliard equations: Neumann boundary conditions and viscosity terms, Arch. Ration. Mech. Anal., 239 (2021), 117-149.
doi: 10.1007/s00205-020-01573-9. |
[10] |
S. Frigeri,
Global existence of weak solutions for a nonlocal model for two-phase flows of incompressible fluids with unmatched densities, Math. Models Methods Appl. Sci., 26 (2016), 1955-1993.
doi: 10.1142/S0218202516500494. |
[11] |
S. Frigeri,
On a nonlocal Cahn-Hilliard/Navier-Stokes system with degenerate mobility and singular potential for incompressible fluids with different densities, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 38 (2021), 647-687.
doi: 10.1016/j.anihpc.2020.08.005. |
[12] |
S. Frigeri, C. G. Gal and and M. Grasselli,
Regularity results for the nonlocal Cahn-Hilliard equation with singular potential and degenerate mobility, J. Differential Equations, 287 (2021), 295-328.
doi: 10.1016/j.jde.2021.03.052. |
[13] |
C. G. Gal, M. Grasselli and H. Wu,
Global weak solutions to a diffuse interface model for incompressible two-phase flows with moving contact lines and different densities, Arch. Ration. Mech. Anal., 234 (2019), 1-56.
doi: 10.1007/s00205-019-01383-8. |
[14] |
A. Giorgini, Well-posedness of the two-dimensional Abels-Garcke-Grün model for two-phase flows with unmatched densities, Calc. Var. Partial Differential Equations, 60 (2021), Paper No. 100, 40 pp.
doi: 10.1007/s00526-021-01962-2. |
[15] |
Z. Liang,
On the existence of weak solutions to non-local Cahn-Hilliard/Navier-Stokes equations and its local asymptotics, Commun. Math. Sci., 18 (2020), 2121-2147.
doi: 10.4310/CMS.2020.v18.n8.a2. |
[16] |
S. Melchionna, H. Ranetbauer, L. Scarpa and L. Trussardi,
From nonlocal to local Cahn-Hilliard equation, Adv. Math. Sci. Appl., 28 (2019), 197-211.
|
[17] |
A. C. Ponce,
An estimate in the spirit of Poincaré's inequality, J. Eur. Math. Soc. (JEMS), 6 (2004), 1-15.
|
[18] |
A. C. Ponce,
A new approach to Sobolev spaces and connections to $\Gamma$-convergence, Calc. Var. Partial Differential Equations, 19 (2004), 229-255.
doi: 10.1007/s00526-003-0195-z. |
[19] |
J. Weber, Analysis of Diffuse Interface Models for Two-Phase Flows with and without Surfactants, Ph.D thesis, University Regensburg, urn: nbn: de: bvb: 355-epub-342471, 2016. |
[1] |
Michela Eleuteri, Elisabetta Rocca, Giulio Schimperna. On a non-isothermal diffuse interface model for two-phase flows of incompressible fluids. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2497-2522. doi: 10.3934/dcds.2015.35.2497 |
[2] |
Helmut Abels, Harald Garcke, Josef Weber. Existence of weak solutions for a diffuse interface model for two-phase flow with surfactants. Communications on Pure and Applied Analysis, 2019, 18 (1) : 195-225. doi: 10.3934/cpaa.2019011 |
[3] |
Desheng Li, Xuewei Ju. On dynamical behavior of viscous Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2207-2221. doi: 10.3934/dcds.2012.32.2207 |
[4] |
Cecilia Cavaterra, Maurizio Grasselli, Hao Wu. Non-isothermal viscous Cahn-Hilliard equation with inertial term and dynamic boundary conditions. Communications on Pure and Applied Analysis, 2014, 13 (5) : 1855-1890. doi: 10.3934/cpaa.2014.13.1855 |
[5] |
Zhen Cheng, Wenjun Wang. The Cauchy problem of a two-phase flow model for a mixture of non-interacting compressible fluids. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4155-4176. doi: 10.3934/cpaa.2021151 |
[6] |
Joelma Azevedo, Juan Carlos Pozo, Arlúcio Viana. Global solutions to the non-local Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2515-2535. doi: 10.3934/dcdsb.2021146 |
[7] |
Irena Pawłow, Wojciech M. Zajączkowski. A sixth order Cahn-Hilliard type equation arising in oil-water-surfactant mixtures. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1823-1847. doi: 10.3934/cpaa.2011.10.1823 |
[8] |
Mauro Fabrizio, Claudio Giorgi, Angelo Morro. Phase transition and separation in compressible Cahn-Hilliard fluids. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 73-88. doi: 10.3934/dcdsb.2014.19.73 |
[9] |
Riccarda Rossi. On two classes of generalized viscous Cahn-Hilliard equations. Communications on Pure and Applied Analysis, 2005, 4 (2) : 405-430. doi: 10.3934/cpaa.2005.4.405 |
[10] |
Laurence Cherfils, Alain Miranville, Sergey Zelik. On a generalized Cahn-Hilliard equation with biological applications. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 2013-2026. doi: 10.3934/dcdsb.2014.19.2013 |
[11] |
Álvaro Hernández, Michał Kowalczyk. Rotationally symmetric solutions to the Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 801-827. doi: 10.3934/dcds.2017033 |
[12] |
Changchun Liu, Hui Tang. Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions. Evolution Equations and Control Theory, 2017, 6 (2) : 219-237. doi: 10.3934/eect.2017012 |
[13] |
A. V. Bobylev, Vladimir Dorodnitsyn. Symmetries of evolution equations with non-local operators and applications to the Boltzmann equation. Discrete and Continuous Dynamical Systems, 2009, 24 (1) : 35-57. doi: 10.3934/dcds.2009.24.35 |
[14] |
Laurence Cherfils, Madalina Petcu. On the viscous Cahn-Hilliard-Navier-Stokes equations with dynamic boundary conditions. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1419-1449. doi: 10.3934/cpaa.2016.15.1419 |
[15] |
T. Tachim Medjo. A Cahn-Hilliard-Navier-Stokes model with delays. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2663-2685. doi: 10.3934/dcdsb.2016067 |
[16] |
Guochun Wu, Yinghui Zhang. Global analysis of strong solutions for the viscous liquid-gas two-phase flow model in a bounded domain. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1411-1429. doi: 10.3934/dcdsb.2018157 |
[17] |
Sergey Zelik, Jon Pennant. Global well-posedness in uniformly local spaces for the Cahn-Hilliard equation in $\mathbb{R}^3$. Communications on Pure and Applied Analysis, 2013, 12 (1) : 461-480. doi: 10.3934/cpaa.2013.12.461 |
[18] |
Anna Amirdjanova, Jie Xiong. Large deviation principle for a stochastic navier-Stokes equation in its vorticity form for a two-dimensional incompressible flow. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 651-666. doi: 10.3934/dcdsb.2006.6.651 |
[19] |
Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete and Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127 |
[20] |
Theodore Tachim Medjo. A two-phase flow model with delays. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3273-3294. doi: 10.3934/dcdsb.2017137 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]