August  2022, 15(8): 1871-1881. doi: 10.3934/dcdss.2022117

Convergence of a nonlocal to a local diffuse interface model for two-phase flow with unmatched densities

1. 

Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany

2. 

Graduate School of Mathematics, Nagoya University, Furocho Chikusaku, Nagoya, 464-8602, Japan

* Corresponding author: Helmut Abels

Received  January 2022 Revised  April 2022 Published  August 2022 Early access  May 2022

Fund Project: The second author has been supported by JSPS KAKENHI number 17K17804

We prove convergence of suitable subsequences of weak solutions of a diffuse interface model for the two-phase flow of incompressible fluids with different densities with a nonlocal Cahn-Hilliard equation to weak solutions of the corresponding system with a standard "local" Cahn-Hilliard equation. The analysis is done in the case of a sufficiently smooth bounded domain with no-slip boundary condition for the velocity and Neumann boundary conditions for the Cahn-Hilliard equation. The proof is based on the corresponding result in the case of a single Cahn-Hilliard equation and compactness arguments used in the proof of existence of weak solutions for the diffuse interface model.

Citation: Helmut Abels, Yutaka Terasawa. Convergence of a nonlocal to a local diffuse interface model for two-phase flow with unmatched densities. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 1871-1881. doi: 10.3934/dcdss.2022117
References:
[1]

H. Abels, Existence of weak solutions for a diffuse interface model for viscous, incompressible fluids with general densities, Comm. Math. Phys., 289 (2009), 45-73.  doi: 10.1007/s00220-009-0806-4.

[2]

H. AbelsS. Bosia and M. Grasselli, Cahn-Hilliard equation with nonlocal singular free energies, Ann. Mat. Pura Appl., 194 (2015), 1071-1106.  doi: 10.1007/s10231-014-0411-9.

[3]

H. AbelsD. Depner and H. Garcke, Existence of weak solutions for a diffuse interface model for two-phase flows of incompressible fluids with different densities, J. Math. Fluid Mech., 15 (2013), 453-480.  doi: 10.1007/s00021-012-0118-x.

[4]

H. Abels, H. Garcke and G. Grün, Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities, Math. Models Methods Appl. Sci., 22 (2012), 1150013, 40 pp. doi: 10.1142/S0218202511500138.

[5]

H. Abels and Y. Terasawa, Weak solutions for a diffuse interface model for two-phase flows of incompressible fluids with different densities and nonlocal free energies, Math. Methods Appl. Sci., 43 (2020), 3200-3219.  doi: 10.1002/mma.6111.

[6]

H. Abels and J. Weber, Local well-posedness of a quasi-incompressible two-phase flow, J. Evol. Equ., 21 (2021), 3477-3502.  doi: 10.1007/s00028-020-00646-2.

[7]

E. DavoliH. RanetbauerL. Scarpa and L. Trussardi, Degenerate nonlocal Cahn-Hilliard equations: Well-posedness, regularity and local asymptotics, Ann. Inst. H. Poincaré Anal. Non Linéaire, 37 (2020), 627-651.  doi: 10.1016/j.anihpc.2019.10.002.

[8]

E. DavoliL. Scarpa and L. Trussardi, Local asymptotics for nonlocal convective Cahn-Hilliard equations with $W^{1, 1}$ kernel and singular potential, J. Differential Equations, 289 (2021), 35-58.  doi: 10.1016/j.jde.2021.04.016.

[9]

E. DavoliL. Scarpa and L. Trussardi, Nonlocal-to-local convergence of Cahn-Hilliard equations: Neumann boundary conditions and viscosity terms, Arch. Ration. Mech. Anal., 239 (2021), 117-149.  doi: 10.1007/s00205-020-01573-9.

[10]

S. Frigeri, Global existence of weak solutions for a nonlocal model for two-phase flows of incompressible fluids with unmatched densities, Math. Models Methods Appl. Sci., 26 (2016), 1955-1993.  doi: 10.1142/S0218202516500494.

[11]

S. Frigeri, On a nonlocal Cahn-Hilliard/Navier-Stokes system with degenerate mobility and singular potential for incompressible fluids with different densities, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 38 (2021), 647-687.  doi: 10.1016/j.anihpc.2020.08.005.

[12]

S. FrigeriC. G. Gal and and M. Grasselli, Regularity results for the nonlocal Cahn-Hilliard equation with singular potential and degenerate mobility, J. Differential Equations, 287 (2021), 295-328.  doi: 10.1016/j.jde.2021.03.052.

[13]

C. G. GalM. Grasselli and H. Wu, Global weak solutions to a diffuse interface model for incompressible two-phase flows with moving contact lines and different densities, Arch. Ration. Mech. Anal., 234 (2019), 1-56.  doi: 10.1007/s00205-019-01383-8.

[14]

A. Giorgini, Well-posedness of the two-dimensional Abels-Garcke-Grün model for two-phase flows with unmatched densities, Calc. Var. Partial Differential Equations, 60 (2021), Paper No. 100, 40 pp. doi: 10.1007/s00526-021-01962-2.

[15]

Z. Liang, On the existence of weak solutions to non-local Cahn-Hilliard/Navier-Stokes equations and its local asymptotics, Commun. Math. Sci., 18 (2020), 2121-2147.  doi: 10.4310/CMS.2020.v18.n8.a2.

[16]

S. MelchionnaH. RanetbauerL. Scarpa and L. Trussardi, From nonlocal to local Cahn-Hilliard equation, Adv. Math. Sci. Appl., 28 (2019), 197-211. 

[17]

A. C. Ponce, An estimate in the spirit of Poincaré's inequality, J. Eur. Math. Soc. (JEMS), 6 (2004), 1-15. 

[18]

A. C. Ponce, A new approach to Sobolev spaces and connections to $\Gamma$-convergence, Calc. Var. Partial Differential Equations, 19 (2004), 229-255.  doi: 10.1007/s00526-003-0195-z.

[19]

J. Weber, Analysis of Diffuse Interface Models for Two-Phase Flows with and without Surfactants, Ph.D thesis, University Regensburg, urn: nbn: de: bvb: 355-epub-342471, 2016.

show all references

References:
[1]

H. Abels, Existence of weak solutions for a diffuse interface model for viscous, incompressible fluids with general densities, Comm. Math. Phys., 289 (2009), 45-73.  doi: 10.1007/s00220-009-0806-4.

[2]

H. AbelsS. Bosia and M. Grasselli, Cahn-Hilliard equation with nonlocal singular free energies, Ann. Mat. Pura Appl., 194 (2015), 1071-1106.  doi: 10.1007/s10231-014-0411-9.

[3]

H. AbelsD. Depner and H. Garcke, Existence of weak solutions for a diffuse interface model for two-phase flows of incompressible fluids with different densities, J. Math. Fluid Mech., 15 (2013), 453-480.  doi: 10.1007/s00021-012-0118-x.

[4]

H. Abels, H. Garcke and G. Grün, Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities, Math. Models Methods Appl. Sci., 22 (2012), 1150013, 40 pp. doi: 10.1142/S0218202511500138.

[5]

H. Abels and Y. Terasawa, Weak solutions for a diffuse interface model for two-phase flows of incompressible fluids with different densities and nonlocal free energies, Math. Methods Appl. Sci., 43 (2020), 3200-3219.  doi: 10.1002/mma.6111.

[6]

H. Abels and J. Weber, Local well-posedness of a quasi-incompressible two-phase flow, J. Evol. Equ., 21 (2021), 3477-3502.  doi: 10.1007/s00028-020-00646-2.

[7]

E. DavoliH. RanetbauerL. Scarpa and L. Trussardi, Degenerate nonlocal Cahn-Hilliard equations: Well-posedness, regularity and local asymptotics, Ann. Inst. H. Poincaré Anal. Non Linéaire, 37 (2020), 627-651.  doi: 10.1016/j.anihpc.2019.10.002.

[8]

E. DavoliL. Scarpa and L. Trussardi, Local asymptotics for nonlocal convective Cahn-Hilliard equations with $W^{1, 1}$ kernel and singular potential, J. Differential Equations, 289 (2021), 35-58.  doi: 10.1016/j.jde.2021.04.016.

[9]

E. DavoliL. Scarpa and L. Trussardi, Nonlocal-to-local convergence of Cahn-Hilliard equations: Neumann boundary conditions and viscosity terms, Arch. Ration. Mech. Anal., 239 (2021), 117-149.  doi: 10.1007/s00205-020-01573-9.

[10]

S. Frigeri, Global existence of weak solutions for a nonlocal model for two-phase flows of incompressible fluids with unmatched densities, Math. Models Methods Appl. Sci., 26 (2016), 1955-1993.  doi: 10.1142/S0218202516500494.

[11]

S. Frigeri, On a nonlocal Cahn-Hilliard/Navier-Stokes system with degenerate mobility and singular potential for incompressible fluids with different densities, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 38 (2021), 647-687.  doi: 10.1016/j.anihpc.2020.08.005.

[12]

S. FrigeriC. G. Gal and and M. Grasselli, Regularity results for the nonlocal Cahn-Hilliard equation with singular potential and degenerate mobility, J. Differential Equations, 287 (2021), 295-328.  doi: 10.1016/j.jde.2021.03.052.

[13]

C. G. GalM. Grasselli and H. Wu, Global weak solutions to a diffuse interface model for incompressible two-phase flows with moving contact lines and different densities, Arch. Ration. Mech. Anal., 234 (2019), 1-56.  doi: 10.1007/s00205-019-01383-8.

[14]

A. Giorgini, Well-posedness of the two-dimensional Abels-Garcke-Grün model for two-phase flows with unmatched densities, Calc. Var. Partial Differential Equations, 60 (2021), Paper No. 100, 40 pp. doi: 10.1007/s00526-021-01962-2.

[15]

Z. Liang, On the existence of weak solutions to non-local Cahn-Hilliard/Navier-Stokes equations and its local asymptotics, Commun. Math. Sci., 18 (2020), 2121-2147.  doi: 10.4310/CMS.2020.v18.n8.a2.

[16]

S. MelchionnaH. RanetbauerL. Scarpa and L. Trussardi, From nonlocal to local Cahn-Hilliard equation, Adv. Math. Sci. Appl., 28 (2019), 197-211. 

[17]

A. C. Ponce, An estimate in the spirit of Poincaré's inequality, J. Eur. Math. Soc. (JEMS), 6 (2004), 1-15. 

[18]

A. C. Ponce, A new approach to Sobolev spaces and connections to $\Gamma$-convergence, Calc. Var. Partial Differential Equations, 19 (2004), 229-255.  doi: 10.1007/s00526-003-0195-z.

[19]

J. Weber, Analysis of Diffuse Interface Models for Two-Phase Flows with and without Surfactants, Ph.D thesis, University Regensburg, urn: nbn: de: bvb: 355-epub-342471, 2016.

[1]

Michela Eleuteri, Elisabetta Rocca, Giulio Schimperna. On a non-isothermal diffuse interface model for two-phase flows of incompressible fluids. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2497-2522. doi: 10.3934/dcds.2015.35.2497

[2]

Helmut Abels, Harald Garcke, Josef Weber. Existence of weak solutions for a diffuse interface model for two-phase flow with surfactants. Communications on Pure and Applied Analysis, 2019, 18 (1) : 195-225. doi: 10.3934/cpaa.2019011

[3]

Desheng Li, Xuewei Ju. On dynamical behavior of viscous Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2207-2221. doi: 10.3934/dcds.2012.32.2207

[4]

Cecilia Cavaterra, Maurizio Grasselli, Hao Wu. Non-isothermal viscous Cahn-Hilliard equation with inertial term and dynamic boundary conditions. Communications on Pure and Applied Analysis, 2014, 13 (5) : 1855-1890. doi: 10.3934/cpaa.2014.13.1855

[5]

Zhen Cheng, Wenjun Wang. The Cauchy problem of a two-phase flow model for a mixture of non-interacting compressible fluids. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4155-4176. doi: 10.3934/cpaa.2021151

[6]

Joelma Azevedo, Juan Carlos Pozo, Arlúcio Viana. Global solutions to the non-local Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2515-2535. doi: 10.3934/dcdsb.2021146

[7]

Irena Pawłow, Wojciech M. Zajączkowski. A sixth order Cahn-Hilliard type equation arising in oil-water-surfactant mixtures. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1823-1847. doi: 10.3934/cpaa.2011.10.1823

[8]

Mauro Fabrizio, Claudio Giorgi, Angelo Morro. Phase transition and separation in compressible Cahn-Hilliard fluids. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 73-88. doi: 10.3934/dcdsb.2014.19.73

[9]

Riccarda Rossi. On two classes of generalized viscous Cahn-Hilliard equations. Communications on Pure and Applied Analysis, 2005, 4 (2) : 405-430. doi: 10.3934/cpaa.2005.4.405

[10]

Laurence Cherfils, Alain Miranville, Sergey Zelik. On a generalized Cahn-Hilliard equation with biological applications. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 2013-2026. doi: 10.3934/dcdsb.2014.19.2013

[11]

Álvaro Hernández, Michał Kowalczyk. Rotationally symmetric solutions to the Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 801-827. doi: 10.3934/dcds.2017033

[12]

Changchun Liu, Hui Tang. Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions. Evolution Equations and Control Theory, 2017, 6 (2) : 219-237. doi: 10.3934/eect.2017012

[13]

A. V. Bobylev, Vladimir Dorodnitsyn. Symmetries of evolution equations with non-local operators and applications to the Boltzmann equation. Discrete and Continuous Dynamical Systems, 2009, 24 (1) : 35-57. doi: 10.3934/dcds.2009.24.35

[14]

Laurence Cherfils, Madalina Petcu. On the viscous Cahn-Hilliard-Navier-Stokes equations with dynamic boundary conditions. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1419-1449. doi: 10.3934/cpaa.2016.15.1419

[15]

T. Tachim Medjo. A Cahn-Hilliard-Navier-Stokes model with delays. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2663-2685. doi: 10.3934/dcdsb.2016067

[16]

Guochun Wu, Yinghui Zhang. Global analysis of strong solutions for the viscous liquid-gas two-phase flow model in a bounded domain. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1411-1429. doi: 10.3934/dcdsb.2018157

[17]

Sergey Zelik, Jon Pennant. Global well-posedness in uniformly local spaces for the Cahn-Hilliard equation in $\mathbb{R}^3$. Communications on Pure and Applied Analysis, 2013, 12 (1) : 461-480. doi: 10.3934/cpaa.2013.12.461

[18]

Anna Amirdjanova, Jie Xiong. Large deviation principle for a stochastic navier-Stokes equation in its vorticity form for a two-dimensional incompressible flow. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 651-666. doi: 10.3934/dcdsb.2006.6.651

[19]

Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete and Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127

[20]

Theodore Tachim Medjo. A two-phase flow model with delays. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3273-3294. doi: 10.3934/dcdsb.2017137

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (104)
  • HTML views (35)
  • Cited by (0)

Other articles
by authors

[Back to Top]