• Previous Article
    Spreading speeds of a parabolic-parabolic chemotaxis model with logistic source on $ \mathbb{R}^{N} $
  • DCDS-S Home
  • This Issue
  • Next Article
    Optimized Ventcel-Schwarz waveform relaxation and mixed hybrid finite element method for transport problems
October  2022, 15(10): 2965-2980. doi: 10.3934/dcdss.2022127

The stability with the general decay rate of the solution for stochastic functional Navier-Stokes equations

School of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China

Dedicated to Professor Georg Hetzer's 75th birthday

Received  April 2021 Revised  May 2022 Published  October 2022 Early access  June 2022

Fund Project: The author is supported by Initial Scientific Research Fund in Northwest Normal University under Grant No. 202103101206/6014

This paper is concerned with the general stability of the solution to a stochastic functional 2D Navier-Stokes equation driven by a multiplicative white noise when the viscosity coefficient is time varying. First we give some sufficient conditions ensuring the existence and uniqueness of global solutions. Then the general stability of the solution in the sense of p-th ($ p\geq2 $) moment is established. From this fact we further prove that the null solution is almost surely stable with the general decay rate. The convergence in probability of the solution is also analyzed.

Citation: Tongtong Liang. The stability with the general decay rate of the solution for stochastic functional Navier-Stokes equations. Discrete and Continuous Dynamical Systems - S, 2022, 15 (10) : 2965-2980. doi: 10.3934/dcdss.2022127
References:
[1]

T. Caraballo and X. Han, Stability of stationary solutions to 2D-Navier-Stokes models with delays, Dyn. Partial Differ. Equ., 11 (2014), 345-359.  doi: 10.4310/DPDE.2014.v11.n4.a3.

[2]

T. Caraballo and X. Han, A survey on Navier-Stokes models with delays: Existence, uniqueness and asymptotic behavior of solutions, Discrete Contin. Dyn. Syst. Ser. S, 8 (2015), 1079-1101.  doi: 10.3934/dcdss.2015.8.1079.

[3]

T. CaraballoJ. A. Langa and T. Taniguchi, The exponential behaviour and stabilizability of stochastic 2D-Navier-Stokes equations, J. Differential Equations, 179 (2002), 714-737.  doi: 10.1006/jdeq.2001.4037.

[4]

T. Caraballo and J. Real, Navier-Stokes equations with delays, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 2441-2453.  doi: 10.1098/rspa.2001.0807.

[5]

T. Caraballo and J. Real, Attractors for 2D-Navier-Stokes models with delays, J. Differential Equations, 205 (2004), 271-297.  doi: 10.1016/j.jde.2004.04.012.

[6]

H. Chen, Asymptotic behavior of stochastic two-dimensional Navier-Stokes equations with delays, Proc. Indian Acad. Sci. Math. Sci., 122 (2012), 283-295.  doi: 10.1007/s12044-012-0071-x.

[7]

H. ChenP. Shi and C.-C. Lim, Stability analysis for neutral stochastic delay systems with Markovian switching, Systems Control Lett., 110 (2017), 38-48.  doi: 10.1016/j.sysconle.2017.10.008.

[8]

H. Chen and C. Yuan, On the asymptotic behavior for neutral stochastic differential delay equations, IEEE Trans. Automat. Control, 64 (2019), 1671-1678.  doi: 10.1109/TAC.2018.2852607.

[9]

X. Gao and H. Gao, Existence and uniqueness of weak solutions to stochastic 3D Navier-Stokes equations with delays, Appl. Math. Lett., 95 (2019), 158-164.  doi: 10.1016/j.aml.2019.03.037.

[10]

J. García-Luengo and P. Marín-Rubio, Pullback attractors for 2D Navier-Stokes equations with delays and the flattening property, Commun. Pure Appl. Anal., 19 (2020), 2127-2146.  doi: 10.3934/cpaa.2020094.

[11]

J. García-LuengoP. Marín-Rubio and J. Real, Regularity of pullback attractors and attraction in $H^1$ in arbitrarily large finite intervals for 2D Navier-Stokes equations with infinite delay, Discrete Contin. Dyn. Syst., 34 (2004), 181-201.  doi: 10.3934/dcds.2014.34.181.

[12]

M. J. Garrido-Atienza and P. Marín-Rubio, Navier-Stokes equations with delays on unbounded domains, Nonlinear Anal., 64 (2006), 1100-1118.  doi: 10.1016/j.na.2005.05.057.

[13]

J. LiY. Wang and X.-G. Yang, Pullback attractors of 2D Navier-Stokes equations with weak damping, distributed delay, and continuous delay, Math. Methods Appl. Sci., 39 (2016), 3186-3203.  doi: 10.1002/mma.3762.

[14]

T. Liang and Y. Wang, Sub-critical and critical stochastic quasi-geostrophic equations with infinite delay, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 4697-4726.  doi: 10.3934/dcdsb.2020309.

[15]

L. Liu and T. Caraballo, Analysis of a stochastic $2D$-Navier-Stokes model with infinite delay, J. Dynam. Differential Equations, 31 (2019), 2249-2274.  doi: 10.1007/s10884-018-9703-x.

[16]

L. LiuT. Caraballo and P. Marín-Rubio, Stability results for 2D Navier-Stokes equations with unbounded delay, J. Differential Equations, 265 (2018), 5685-5708.  doi: 10.1016/j.jde.2018.07.008.

[17]

P. Marín-RubioA. M. Márquez-Durán and J. Real, Pullback attractors for globally modified Navier-Stokes equations with infinite delays, Discrete Contin. Dyn. Syst., 31 (2011), 779-796.  doi: 10.3934/dcds.2011.31.779.

[18]

P. Marín-RubioA. M. Márquez-Durán and J. Real, Asymptotic behavior of solutions for a three dimensional system of globally modified Navier-Stokes equations with a locally Lipschitz delay term, Nonlinear Anal., 79 (2013), 68-79.  doi: 10.1016/j.na.2012.11.006.

[19]

P. Marín-RubioJ. Real and J. Valero, Pullback attractors for a two-dimensional Navier-Stokes model in an infinite delay case, Nonlinear Anal., 74 (2011), 2012-2030.  doi: 10.1016/j.na.2010.11.008.

[20]

C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations, in: Lecture Notes in Mathematics, Springer, Berlin, 2007.

[21]

T. Taniguchi, The exponential behavior of Navier-Stokes equations with time delay external force, Discrete Contin. Dyn. Syst., 12 (2005), 997-1018.  doi: 10.3934/dcds.2005.12.997.

[22]

T. Taniguchi, The existence and asymptotic behaviour of energy solutions to stochastic 2D functional Navier-Stokes equations driven by Lévy processes, J. Math. Anal. Appl., 385 (2012), 634-654.  doi: 10.1016/j.jmaa.2011.06.076.

[23]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, North-Holland, Amsterdam-New York-Oxford, 1977.

[24]

M. Wei and T. Zhang, Exponential stability for stochastic 2D-Navier-Stokes equations with time delay, Appl. Math. J. Chin. Univ. Ser. A, 24 (2009), 493-500. 

show all references

References:
[1]

T. Caraballo and X. Han, Stability of stationary solutions to 2D-Navier-Stokes models with delays, Dyn. Partial Differ. Equ., 11 (2014), 345-359.  doi: 10.4310/DPDE.2014.v11.n4.a3.

[2]

T. Caraballo and X. Han, A survey on Navier-Stokes models with delays: Existence, uniqueness and asymptotic behavior of solutions, Discrete Contin. Dyn. Syst. Ser. S, 8 (2015), 1079-1101.  doi: 10.3934/dcdss.2015.8.1079.

[3]

T. CaraballoJ. A. Langa and T. Taniguchi, The exponential behaviour and stabilizability of stochastic 2D-Navier-Stokes equations, J. Differential Equations, 179 (2002), 714-737.  doi: 10.1006/jdeq.2001.4037.

[4]

T. Caraballo and J. Real, Navier-Stokes equations with delays, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 2441-2453.  doi: 10.1098/rspa.2001.0807.

[5]

T. Caraballo and J. Real, Attractors for 2D-Navier-Stokes models with delays, J. Differential Equations, 205 (2004), 271-297.  doi: 10.1016/j.jde.2004.04.012.

[6]

H. Chen, Asymptotic behavior of stochastic two-dimensional Navier-Stokes equations with delays, Proc. Indian Acad. Sci. Math. Sci., 122 (2012), 283-295.  doi: 10.1007/s12044-012-0071-x.

[7]

H. ChenP. Shi and C.-C. Lim, Stability analysis for neutral stochastic delay systems with Markovian switching, Systems Control Lett., 110 (2017), 38-48.  doi: 10.1016/j.sysconle.2017.10.008.

[8]

H. Chen and C. Yuan, On the asymptotic behavior for neutral stochastic differential delay equations, IEEE Trans. Automat. Control, 64 (2019), 1671-1678.  doi: 10.1109/TAC.2018.2852607.

[9]

X. Gao and H. Gao, Existence and uniqueness of weak solutions to stochastic 3D Navier-Stokes equations with delays, Appl. Math. Lett., 95 (2019), 158-164.  doi: 10.1016/j.aml.2019.03.037.

[10]

J. García-Luengo and P. Marín-Rubio, Pullback attractors for 2D Navier-Stokes equations with delays and the flattening property, Commun. Pure Appl. Anal., 19 (2020), 2127-2146.  doi: 10.3934/cpaa.2020094.

[11]

J. García-LuengoP. Marín-Rubio and J. Real, Regularity of pullback attractors and attraction in $H^1$ in arbitrarily large finite intervals for 2D Navier-Stokes equations with infinite delay, Discrete Contin. Dyn. Syst., 34 (2004), 181-201.  doi: 10.3934/dcds.2014.34.181.

[12]

M. J. Garrido-Atienza and P. Marín-Rubio, Navier-Stokes equations with delays on unbounded domains, Nonlinear Anal., 64 (2006), 1100-1118.  doi: 10.1016/j.na.2005.05.057.

[13]

J. LiY. Wang and X.-G. Yang, Pullback attractors of 2D Navier-Stokes equations with weak damping, distributed delay, and continuous delay, Math. Methods Appl. Sci., 39 (2016), 3186-3203.  doi: 10.1002/mma.3762.

[14]

T. Liang and Y. Wang, Sub-critical and critical stochastic quasi-geostrophic equations with infinite delay, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 4697-4726.  doi: 10.3934/dcdsb.2020309.

[15]

L. Liu and T. Caraballo, Analysis of a stochastic $2D$-Navier-Stokes model with infinite delay, J. Dynam. Differential Equations, 31 (2019), 2249-2274.  doi: 10.1007/s10884-018-9703-x.

[16]

L. LiuT. Caraballo and P. Marín-Rubio, Stability results for 2D Navier-Stokes equations with unbounded delay, J. Differential Equations, 265 (2018), 5685-5708.  doi: 10.1016/j.jde.2018.07.008.

[17]

P. Marín-RubioA. M. Márquez-Durán and J. Real, Pullback attractors for globally modified Navier-Stokes equations with infinite delays, Discrete Contin. Dyn. Syst., 31 (2011), 779-796.  doi: 10.3934/dcds.2011.31.779.

[18]

P. Marín-RubioA. M. Márquez-Durán and J. Real, Asymptotic behavior of solutions for a three dimensional system of globally modified Navier-Stokes equations with a locally Lipschitz delay term, Nonlinear Anal., 79 (2013), 68-79.  doi: 10.1016/j.na.2012.11.006.

[19]

P. Marín-RubioJ. Real and J. Valero, Pullback attractors for a two-dimensional Navier-Stokes model in an infinite delay case, Nonlinear Anal., 74 (2011), 2012-2030.  doi: 10.1016/j.na.2010.11.008.

[20]

C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations, in: Lecture Notes in Mathematics, Springer, Berlin, 2007.

[21]

T. Taniguchi, The exponential behavior of Navier-Stokes equations with time delay external force, Discrete Contin. Dyn. Syst., 12 (2005), 997-1018.  doi: 10.3934/dcds.2005.12.997.

[22]

T. Taniguchi, The existence and asymptotic behaviour of energy solutions to stochastic 2D functional Navier-Stokes equations driven by Lévy processes, J. Math. Anal. Appl., 385 (2012), 634-654.  doi: 10.1016/j.jmaa.2011.06.076.

[23]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, North-Holland, Amsterdam-New York-Oxford, 1977.

[24]

M. Wei and T. Zhang, Exponential stability for stochastic 2D-Navier-Stokes equations with time delay, Appl. Math. J. Chin. Univ. Ser. A, 24 (2009), 493-500. 

[1]

Jingrui Wang, Keyan Wang. Almost sure existence of global weak solutions to the 3D incompressible Navier-Stokes equation. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 5003-5019. doi: 10.3934/dcds.2017215

[2]

Boris P. Belinskiy, Peter Caithamer. Stochastic stability of some mechanical systems with a multiplicative white noise. Conference Publications, 2003, 2003 (Special) : 91-99. doi: 10.3934/proc.2003.2003.91

[3]

Tian Zhang, Chuanhou Gao. Stability with general decay rate of hybrid neutral stochastic pantograph differential equations driven by Lévy noise. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3725-3747. doi: 10.3934/dcdsb.2021204

[4]

Jie Liao, Xiao-Ping Wang. Stability of an efficient Navier-Stokes solver with Navier boundary condition. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 153-171. doi: 10.3934/dcdsb.2012.17.153

[5]

Qiumei Zhang, Daqing Jiang, Li Zu. The stability of a perturbed eco-epidemiological model with Holling type II functional response by white noise. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 295-321. doi: 10.3934/dcdsb.2015.20.295

[6]

Tomás Caraballo, José A. Langa, James C. Robinson. Stability and random attractors for a reaction-diffusion equation with multiplicative noise. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 875-892. doi: 10.3934/dcds.2000.6.875

[7]

Alexandra Rodkina, Henri Schurz, Leonid Shaikhet. Almost sure stability of some stochastic dynamical systems with memory. Discrete and Continuous Dynamical Systems, 2008, 21 (2) : 571-593. doi: 10.3934/dcds.2008.21.571

[8]

Takeshi Taniguchi. The existence and decay estimates of the solutions to $3$D stochastic Navier-Stokes equations with additive noise in an exterior domain. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4323-4341. doi: 10.3934/dcds.2014.34.4323

[9]

Mehdi Badra, Fabien Caubet, Jérémi Dardé. Stability estimates for Navier-Stokes equations and application to inverse problems. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2379-2407. doi: 10.3934/dcdsb.2016052

[10]

Jing Wang, Lining Tong. Stability of boundary layers for the inflow compressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2595-2613. doi: 10.3934/dcdsb.2012.17.2595

[11]

Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic and Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001

[12]

Boris Haspot, Ewelina Zatorska. From the highly compressible Navier-Stokes equations to the porous medium equation -- rate of convergence. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3107-3123. doi: 10.3934/dcds.2016.36.3107

[13]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5421-5448. doi: 10.3934/dcdsb.2020352

[14]

Xingni Tan, Fuqi Yin, Guihong Fan. Random exponential attractor for stochastic discrete long wave-short wave resonance equation with multiplicative white noise. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3153-3170. doi: 10.3934/dcdsb.2020055

[15]

Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887

[16]

Feimin Huang, Xiaoding Shi, Yi Wang. Stability of viscous shock wave for compressible Navier-Stokes equations with free boundary. Kinetic and Related Models, 2010, 3 (3) : 409-425. doi: 10.3934/krm.2010.3.409

[17]

Bingkang Huang, Lusheng Wang, Qinghua Xiao. Global nonlinear stability of rarefaction waves for compressible Navier-Stokes equations with temperature and density dependent transport coefficients. Kinetic and Related Models, 2016, 9 (3) : 469-514. doi: 10.3934/krm.2016004

[18]

Yuming Qin, Lan Huang, Zhiyong Ma. Global existence and exponential stability in $H^4$ for the nonlinear compressible Navier-Stokes equations. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1991-2012. doi: 10.3934/cpaa.2009.8.1991

[19]

Yinnian He, Pengzhan Huang, Jian Li. H2-stability of some second order fully discrete schemes for the Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2745-2780. doi: 10.3934/dcdsb.2018273

[20]

Chuong V. Tran, Theodore G. Shepherd, Han-Ru Cho. Stability of stationary solutions of the forced Navier-Stokes equations on the two-torus. Discrete and Continuous Dynamical Systems - B, 2002, 2 (4) : 483-494. doi: 10.3934/dcdsb.2002.2.483

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (89)
  • HTML views (50)
  • Cited by (0)

Other articles
by authors

[Back to Top]