\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Dynamics of delayed cellular neural networks in the Stepanov pseudo almost automorphic space

  • * Corresponding author: Adnène Arbi

    * Corresponding author: Adnène Arbi 
Abstract Full Text(HTML) Figure(2) Related Papers Cited by
  • Pseudo almost automorphy (PAA) is a natural generalization of Bochner almost automorphy and Stepanov almost automorphy. Therefore, the results of the existence of PAA solutions of differential equations are few, and the results of the existence of pseudo almost automorphic solutions of difference equations are rare. In this work, we are concerned with a model of delayed cellular neural networks (CNNs). The delays are considered in varying-time form. By the Banach's fixed point theorem, Stepanov like PAA, and constructing a novel Lyapunov functional, we fixed a sufficient criteria that agreement the existence and the Stepanov-exponential stability of Stepanov-like PAA solution of this model of CNNs are obtained. In addition, a numerical example and simulations are performed to verify our theoretical results.

    Mathematics Subject Classification: 43A60, 34C27, 34D23, 92B20, 34Kxx.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Behavior of the state variable $ x_{1} $ of CNNs (1)

    Figure 2.  Behavior of the state variable $ x_{2} $ of CNNs (1)

  • [1] A. Arbi, Novel traveling waves solutions for nonlinear delayed dynamical neural networks with leakage term, Chaos Solitons Fractals, 152 (2021), 111436, 7 pp. doi: 10.1016/j.chaos.2021.111436.
    [2] A. Arbi, Dynamics of BAM neural networks with mixed delays and leakage time-varying delays in the weighted pseudo-almost periodic on time-space scales, Math. Methods Appl. Sci., 41 (2018), 1230-1255.  doi: 10.1002/mma.4661.
    [3] A. ArbiA. Alsaedi and J. Cao, Delta-differentiable weighted pseudo-almost automorphicity on time-space scales for a novel class of high-order competitive neural networks with WPAA coefficients and mixed delays, Neural Processing Letters, 47 (2018), 203-232.  doi: 10.1007/s11063-017-9645-z.
    [4] A. Arbi and J. Cao, Pseudo-almost periodic solution on time-space scales for a novel class of competitive neutral-type neural networks with mixed time-varying delays and leakage delays, Neural Processing Letters, 46 (2017), 719-745.  doi: 10.1007/s11063-017-9620-8.
    [5] A. ArbiY. Guo and J. Cao, Convergence analysis on time scales for HOBAM neural networks in the Stepanov-like weighted pseudo almost automorphic space, Neural Computing and Applications, 33 (2021), 3567-3581.  doi: 10.1007/s00521-020-05183-0.
    [6] A. ArbiN. TahriC. JammaziC. Huang and J. Cao, Almost anti-periodic solution of inertial neural networks with leakage and time-varying delays on timescales, Circuits, Systems, and Signal Processing, 41 (2022), 1940-1956.  doi: 10.1007/s00034-021-01894-4.
    [7] M. BadrounK. EzzinbiK. Khalil and L. Maniar, Pseudo almost periodic solutions for some parabolic evolution equations with Stepanov-like pseudo almost periodic forcing terms, J. Math. Anal. Appl., 462 (2018), 233-262.  doi: 10.1016/j.jmaa.2018.01.037.
    [8] C. Bensouda and M. Zitane, Evolution equations in weighted Stepanov-like pseudo almost automorphic spaces, TWMS J. App. Eng. Math., 3 (2013), 119-132. 
    [9] W. ChenS. Luo and W. Zheng, Impulsive synchronization of reaction-diffusion neural networks with mixed delays and its application to image encryption, IEEE Transactions on Neural Networks and Learning RNNs, 27 (2016), 2696-2710. 
    [10] T. Diagana and M. Zitane, Stepanov-like pseudo almost automorphic functions in Lebesgue spaces with variable exponents $L^{p(x)}$, Electron. J. Diff. Equ., 2013 (2013), No. 188, 20 pp.
    [11] M. Es-Saiydy, I. Oumadene and M. Zitane, Stepanov stability for delayed Lotka-Volterra recurrent neural networks on time scales, Applicable Analysis, (2021). doi: 10.1080/00036811.2021.1967330.
    [12] M. Es-Saiydy, M. Zarhouni and M. Zitane, Stepanov-like pseudo almost automorphy on time scales: New developments and applications, Asia Pac. J. Math., 9 (2022). doi: 10.28924/APJM/9-9.
    [13] M. Es-Saiydy and M. Zitane, Weighted stepanov-like Pseudo almost periodicity on time scales and applications, Differ Equ Dyn Syst, (2020). doi: 10.1007/s12591-020-00543-7.
    [14] M. Es-Saiydy and M. Zitane, Dynamic behavior af a class of delayed Lotka-Volterra recurrent neural networks on time scales, Russian Mathematics, 65 (2021), 59-75.  doi: 10.3103/S1066369X21110074.
    [15] M. Es-Saiydy and M. Zitane, Stepanov-like pseudo almost automorphic dynamics of QVRNNS with mixed delays on time scales via a direct method, Asia Pac. J. Math., 7 (2020). doi: 10.28924/APJM/7-32.
    [16] Y. GuoS. S. Ge and A. Arbi, Stability of traveling waves solutions for nonlinear cellular neural networks with distributed delays, J. Syst. Sci. Complex., 35 (2022), 18-31.  doi: 10.1007/s11424-021-0180-7.
    [17] Y. LiB. LiS. Yao and L. Xiong, The global exponential pseudo almost periodic synchronization of quaternion-valued cellular neural networks with time-varying delays, Neurocomputing, 303 (2018), 75-87.  doi: 10.1016/j.neucom.2018.04.044.
    [18] Y. Li and X. Meng, Existence and global exponential stability of pseudo almost periodic solution for neutral type quaternion-valued neural networks with delays in the Leakage term on time scales, Complexity, 2017 (2017). doi: 10.1155/2017/9878369.
    [19] X. LiD. Peng and J. Cao, Lyapunov stability for impulsive systems via event-triggered impulsive control, IEEE Trans. Automat. Control, 65 (2020), 4908-4913.  doi: 10.1109/TAC.2020.2964558.
    [20] X. LiS. Song and J. Wu, Exponential stability of nonlinear systems with delayed impulses and applications, IEEE Trans. Automat. Control, 64 (2019), 4024-4034.  doi: 10.1109/TAC.2019.2905271.
    [21] J. LiuX. Liu and W.-C. Xie, Global convergence of neural networks with mixed time-varying delays and discontinuous neuron activations, Inform. Sci., 183 (2012), 92-105.  doi: 10.1016/j.ins.2011.08.021.
    [22] Q. Song and X. Chen, Multistability analysis of quaternion-valued neural networks with time delays, IEEE Trans. Neural Netw. Learn. Syst., 29 (2018), 5430-5440.  doi: 10.1109/TNNLS.2018.2801297.
    [23] A. Sudbery, Quaternionic analysis, Math. Proc. Cambridge Philos. Soc., 85 (1979), 199-224.  doi: 10.1017/S0305004100055638.
    [24] C. Xu and Y. Wu, On almost automorphic solutions for cellular neural networks with time-varying delays in leakage terms on time scales, Journal of Intelligent and Fuzzy RNNs, 30 (2016), 423-436. 
    [25] M. Zitane, A generalization of weighted Stepanov-like pseudo almost automorphic space, New Zealand J. Math., 48 (2018), 129-155. 
    [26] M. Zitane and C. Bensouda, Generalized Stepanov-like pseudo almost automorphic solutions to some classes of nonautonomous evolution equations, J. Math. Comput. Sci., 3 (2013), 278-303. 
    [27] H. Zhu, Q. Zhu, X. Sun and H. Zhou, Existence and exponential stability of pseudo almost automorphic solutions for Cohen-Grossberg neural networks with mixed delays, Adv. Difference Equ., (2016), Paper No. 120, 17 pp. doi: 10.1186/s13662-016-0831-5.
    [28] Q. Zhu, Stabilization of stochastic nonlinear delay systems with exogenous disturbances and the event-triggered feedback control, IEEE Transactions on Automatic Control, 64 (2019), 3764-3771.  doi: 10.1109/TAC.2018.2882067.
  • 加载中

Figures(2)

SHARE

Article Metrics

HTML views(420) PDF downloads(292) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return