June  2012, 1(1): 1-16. doi: 10.3934/eect.2012.1.1

Internal stabilization of Navier-Stokes equation with exact controllability on spaces with finite codimension

1. 

Octav Mayer Institute of Mathematics (Romanian Academy), Bd. Carol I, no. 8, Iaşi 700505, Romania

2. 

Octav Mayer Institute of Mathematics (Romanian Academy), and Alexandru Ioan Cuza University (Department of Mathematics), Bd. Carol I, no. 8, Iaşi 700505, Romania

Received  August 2011 Revised  October 2011 Published  March 2012

One designs an internal stabilizing feedback controller, for the Navier-Stokes equations, which steers, in finite time, the initial value $X_o$ in $X_e+\mathcal{X}_s$, where $X_e$ is any equilibrium solution and $\mathcal{X}_s$ is a finite codimensional space, consisting of stable modes.
Citation: Viorel Barbu, Ionuţ Munteanu. Internal stabilization of Navier-Stokes equation with exact controllability on spaces with finite codimension. Evolution Equations and Control Theory, 2012, 1 (1) : 1-16. doi: 10.3934/eect.2012.1.1
References:
[1]

A. V. Balakrishanan, "Applied Functional Analysis," Second editon, Applications of Mathematics, 3, Springer-Verlag, New York-Berlin, 1981.

[2]

V. Barbu, Feedback stabilization of Navier-Stokes equations, ESAIM COCV, 9 (2003), 197-206. doi: 10.1051/cocv:2003009.

[3]

V. Barbu and R. Triggiani, Internal stabilization of Navier-Stokes equations with finite dimensional controllers, Indiana Univ. Math. Journal, 53 (2004), 1443-1494. doi: 10.1512/iumj.2004.53.2445.

[4]

V. Barbu, I. Lasiecka and R. Triggiani, Tangential boundary stabilization of Navier-Stokes equations, Memoires AMS, 851 (2006), x+128 pp.

[5]

V. Barbu, R. Triggiani and I. Lasiecka, Abstract settings for tangential boundary stabilization of Navier-Stokes equations by high and low-gain feedback controllers, Nonlin. Anal.,64 (2006), 2704-2746. doi: 10.1016/j.na.2005.09.012.

[6]

V. Barbu, Optimal stabilizable feedback controller for Navier-Stokes equations, in "Nonlinear Analysis and Optimization I. Nonlinear Analysis," Contemp. Math., 513, Amer. Math. Soc., Providence, RI, (2010), 43-53.

[7]

V. Barbu and C. Lefter, Internal stabilizability of the Navier-Stokes equations. Optimization and control of distributed systems, Systems and Control Letters, 48 (2003), 161-167. doi: 10.1016/S0167-6911(02)00261-X.

[8]

V. Barbu, "Stabilization of the Navier-Stokes Flows," Springer, New York, 2010.

[9]

V. Barbu, I. Lasiecka and R. Triggiani, The unique continuation property of eigenfunctions to Stokes-Oseen operator is generic with respect to the coefficients,, Nonlin. Anal. Ser. A: Theory Meth. and Appl., (). 

[10]

M. Bedra, Feedback stabilization of the 2-D and 3-D Navier Stokes equations based on an extended system, ESAIM COCV, 15 (2009), 934-968. doi: 10.1051/cocv:2008059.

[11]

M. Bedra, Lyapunov functions and local feedback stabilization of the Navier-Stokes equations, SIAM J. Control Optimiz., 48 (2009), 1797-1830. doi: 10.1137/070682630.

[12]

J.-M. Coron, "Control and Nonlinearity," Mathematical Surveys and Monographs, 136, AMS, Providence, RI, 2007.

[13]

A. Fursikov, Stabilization for the 3D Navier-Stokes systems by feedback boundary control, Discrete and Contin. Dyn. Syst., 10 (2004), 289-314. doi: 10.3934/dcds.2004.10.289.

[14]

I. Lasiecka and R. Triggiani, "Control Theory for Partial Differential Equations: Continuous and Approximation Theory," Cambridge Univ. Press, Cambridge, 2000.

[15]

J.-P. Raymond, Feedback boundary stabilization of the three-dimensional incompressible Navier-Stokes equations, J. Math. Pures et Appl. (9), 87 (2007), 627-669. doi: 10.1016/j.matpur.2007.04.002.

[16]

S. S. Ravindran, Reduced-order adaptive controllers for fluid flows using POD, J. Scientific Computing, 15 (2000), 457-478.

[17]

A. Shirikyan, Exact controllability in projections for three-dimensional Navier-Stokes equations, Ann. I. H. Poincaré Anal. Non Linéaire, 24 (2007), 521-537.

[18]

P. Constantin and C. Foias, "Navier-Stokes Equations," Chicago Lectures in Mathematics, The Univ. of Chicago Press, Chicago, IL, 1988.

show all references

References:
[1]

A. V. Balakrishanan, "Applied Functional Analysis," Second editon, Applications of Mathematics, 3, Springer-Verlag, New York-Berlin, 1981.

[2]

V. Barbu, Feedback stabilization of Navier-Stokes equations, ESAIM COCV, 9 (2003), 197-206. doi: 10.1051/cocv:2003009.

[3]

V. Barbu and R. Triggiani, Internal stabilization of Navier-Stokes equations with finite dimensional controllers, Indiana Univ. Math. Journal, 53 (2004), 1443-1494. doi: 10.1512/iumj.2004.53.2445.

[4]

V. Barbu, I. Lasiecka and R. Triggiani, Tangential boundary stabilization of Navier-Stokes equations, Memoires AMS, 851 (2006), x+128 pp.

[5]

V. Barbu, R. Triggiani and I. Lasiecka, Abstract settings for tangential boundary stabilization of Navier-Stokes equations by high and low-gain feedback controllers, Nonlin. Anal.,64 (2006), 2704-2746. doi: 10.1016/j.na.2005.09.012.

[6]

V. Barbu, Optimal stabilizable feedback controller for Navier-Stokes equations, in "Nonlinear Analysis and Optimization I. Nonlinear Analysis," Contemp. Math., 513, Amer. Math. Soc., Providence, RI, (2010), 43-53.

[7]

V. Barbu and C. Lefter, Internal stabilizability of the Navier-Stokes equations. Optimization and control of distributed systems, Systems and Control Letters, 48 (2003), 161-167. doi: 10.1016/S0167-6911(02)00261-X.

[8]

V. Barbu, "Stabilization of the Navier-Stokes Flows," Springer, New York, 2010.

[9]

V. Barbu, I. Lasiecka and R. Triggiani, The unique continuation property of eigenfunctions to Stokes-Oseen operator is generic with respect to the coefficients,, Nonlin. Anal. Ser. A: Theory Meth. and Appl., (). 

[10]

M. Bedra, Feedback stabilization of the 2-D and 3-D Navier Stokes equations based on an extended system, ESAIM COCV, 15 (2009), 934-968. doi: 10.1051/cocv:2008059.

[11]

M. Bedra, Lyapunov functions and local feedback stabilization of the Navier-Stokes equations, SIAM J. Control Optimiz., 48 (2009), 1797-1830. doi: 10.1137/070682630.

[12]

J.-M. Coron, "Control and Nonlinearity," Mathematical Surveys and Monographs, 136, AMS, Providence, RI, 2007.

[13]

A. Fursikov, Stabilization for the 3D Navier-Stokes systems by feedback boundary control, Discrete and Contin. Dyn. Syst., 10 (2004), 289-314. doi: 10.3934/dcds.2004.10.289.

[14]

I. Lasiecka and R. Triggiani, "Control Theory for Partial Differential Equations: Continuous and Approximation Theory," Cambridge Univ. Press, Cambridge, 2000.

[15]

J.-P. Raymond, Feedback boundary stabilization of the three-dimensional incompressible Navier-Stokes equations, J. Math. Pures et Appl. (9), 87 (2007), 627-669. doi: 10.1016/j.matpur.2007.04.002.

[16]

S. S. Ravindran, Reduced-order adaptive controllers for fluid flows using POD, J. Scientific Computing, 15 (2000), 457-478.

[17]

A. Shirikyan, Exact controllability in projections for three-dimensional Navier-Stokes equations, Ann. I. H. Poincaré Anal. Non Linéaire, 24 (2007), 521-537.

[18]

P. Constantin and C. Foias, "Navier-Stokes Equations," Chicago Lectures in Mathematics, The Univ. of Chicago Press, Chicago, IL, 1988.

[1]

Evrad M. D. Ngom, Abdou Sène, Daniel Y. Le Roux. Global stabilization of the Navier-Stokes equations around an unstable equilibrium state with a boundary feedback controller. Evolution Equations and Control Theory, 2015, 4 (1) : 89-106. doi: 10.3934/eect.2015.4.89

[2]

Chérif Amrouche, María Ángeles Rodríguez-Bellido. On the very weak solution for the Oseen and Navier-Stokes equations. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 159-183. doi: 10.3934/dcdss.2010.3.159

[3]

Evrad M. D. Ngom, Abdou Sène, Daniel Y. Le Roux. Boundary stabilization of the Navier-Stokes equations with feedback controller via a Galerkin method. Evolution Equations and Control Theory, 2014, 3 (1) : 147-166. doi: 10.3934/eect.2014.3.147

[4]

Atanas Stefanov. On the Lipschitzness of the solution map for the 2 D Navier-Stokes system. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1471-1490. doi: 10.3934/dcds.2010.26.1471

[5]

A. V. Fursikov. Stabilization for the 3D Navier-Stokes system by feedback boundary control. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 289-314. doi: 10.3934/dcds.2004.10.289

[6]

Vena Pearl Bongolan-walsh, David Cheban, Jinqiao Duan. Recurrent motions in the nonautonomous Navier-Stokes system. Discrete and Continuous Dynamical Systems - B, 2003, 3 (2) : 255-262. doi: 10.3934/dcdsb.2003.3.255

[7]

Kuijie Li, Tohru Ozawa, Baoxiang Wang. Dynamical behavior for the solutions of the Navier-Stokes equation. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1511-1560. doi: 10.3934/cpaa.2018073

[8]

C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 403-429. doi: 10.3934/dcds.2001.7.403

[9]

Andrei Fursikov, Alexey V. Gorshkov. Certain questions of feedback stabilization for Navier-Stokes equations. Evolution Equations and Control Theory, 2012, 1 (1) : 109-140. doi: 10.3934/eect.2012.1.109

[10]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure and Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[11]

Wenjing Song, Ganshan Yang. The regularization of solution for the coupled Navier-Stokes and Maxwell equations. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 2113-2127. doi: 10.3934/dcdss.2016087

[12]

Roberto Triggiani. Stability enhancement of a 2-D linear Navier-Stokes channel flow by a 2-D, wall-normal boundary controller. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 279-314. doi: 10.3934/dcdsb.2007.8.279

[13]

Grzegorz Karch, Xiaoxin Zheng. Time-dependent singularities in the Navier-Stokes system. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3039-3057. doi: 10.3934/dcds.2015.35.3039

[14]

Grzegorz Karch, Maria E. Schonbek, Tomas P. Schonbek. Singularities of certain finite energy solutions to the Navier-Stokes system. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 189-206. doi: 10.3934/dcds.2020008

[15]

Igor Kukavica. Interior gradient bounds for the 2D Navier-Stokes system. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 873-882. doi: 10.3934/dcds.2001.7.873

[16]

Joelma Azevedo, Claudio Cuevas, Jarbas Dantas, Clessius Silva. On the fractional chemotaxis Navier-Stokes system in the critical spaces. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022088

[17]

Trinh Viet Duoc. Navier-Stokes-Oseen flows in the exterior of a rotating and translating obstacle. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3387-3405. doi: 10.3934/dcds.2018145

[18]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[19]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149

[20]

I. Moise, Roger Temam. Renormalization group method: Application to Navier-Stokes equation. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 191-210. doi: 10.3934/dcds.2000.6.191

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (38)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]